Understanding the Polypharmacological Profiles of Triple Reuptake Inhibitors by Molecular Simulation

医学 药理学
作者
Gao Tu,Tingting Fu,Fengyuan Yang,H. J. Yang,Zhao Zhang,Xiaojun Yao,Weiwei Xue,Feng Zhu
出处
期刊:ACS Chemical Neuroscience [American Chemical Society]
卷期号:12 (11): 2013-2026 被引量:20
标识
DOI:10.1021/acschemneuro.1c00127
摘要

The triple reuptake inhibitors (TRIs) class is a class of effective inhibitors of human monoamine transporters (hMATs), which includes dopamine, norepinephrine, and serotonin transporters (hDATs, hNETs, and hSERTs). Due to the high degree of structural homology of the binding sites of those transporters, it is a great challenge to design potent TRIs with fine-tuned binding profiles. The molecular determinants responsible for the binding selectivity of TRIs to hDATs, hNETs, and hSERTs remain elusive. In this study, the solved X-ray crystallographic structure of hSERT in complex with escitalopram was used as a basis for modeling nine complexes of three representative TRIs (SEP225289, NS2359, and EB1020) bound to their corresponding targets. Molecular dynamics (MD) and effective post-trajectory analysis were performed to estimate the drug binding free energies and characterize the selective profiles of each TRI to hMATs. The common binding mode of studied TRIs to hMATs was revealed by hierarchical clustering analysis of the per-residue energy. Furthermore, the combined protein-ligand interaction fingerprint and residue energy contribution analysis indicated that several conserved and nonconserved "Warm Spots" such as S149, V328, and M427 in hDAT, F317, F323, and V325 in hNET and F335, F341, and V343 in hSERT were responsible for the TRI-binding selectivity. These findings provided important information for rational design of a single drug with better polypharmacological profiles through modulating multiple targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单薄的咖啡完成签到 ,获得积分10
刚刚
1秒前
3秒前
fengzi151完成签到,获得积分10
3秒前
3秒前
Leohp发布了新的文献求助10
4秒前
邹文静完成签到,获得积分10
5秒前
FashionBoy应助最好采纳,获得10
5秒前
yang完成签到,获得积分10
5秒前
跳跃的乌龟完成签到,获得积分20
7秒前
FD完成签到 ,获得积分10
8秒前
优雅含莲完成签到 ,获得积分10
8秒前
爱静静应助Jeffery426采纳,获得10
9秒前
10秒前
传奇3应助万勇采纳,获得10
10秒前
Ava应助矮小的睫毛采纳,获得10
11秒前
11秒前
王肥肥完成签到,获得积分10
12秒前
迅速如柏发布了新的文献求助10
12秒前
cadcae发布了新的文献求助30
13秒前
vioviolviolet完成签到,获得积分10
14秒前
14秒前
kk完成签到 ,获得积分10
14秒前
小丹发布了新的文献求助10
14秒前
15秒前
邹文静发布了新的文献求助10
16秒前
宋宋发布了新的文献求助10
16秒前
marongzhi完成签到 ,获得积分10
17秒前
NexusExplorer应助钦川采纳,获得10
17秒前
卿玖完成签到 ,获得积分10
18秒前
19秒前
哈哈完成签到,获得积分10
19秒前
19秒前
科研通AI2S应助朱子采纳,获得10
19秒前
20秒前
kevin完成签到,获得积分10
20秒前
22秒前
小巧日记本完成签到,获得积分10
22秒前
22秒前
无奈世立完成签到,获得积分10
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312036
求助须知:如何正确求助?哪些是违规求助? 2944707
关于积分的说明 8521005
捐赠科研通 2620360
什么是DOI,文献DOI怎么找? 1432797
科研通“疑难数据库(出版商)”最低求助积分说明 664762
邀请新用户注册赠送积分活动 650092