Combined Support Vector Machine Classifier and Brain Structural Network Features for the Individual Classification of Amnestic Mild Cognitive Impairment and Subjective Cognitive Decline Patients

支持向量机 磁共振弥散成像 部分各向异性 认知障碍 人工智能 白质 判别式 模式识别(心理学) 认知 心理学 机器学习 计算机科学 医学 磁共振成像 神经科学 放射科
作者
Weijie Huang,Xuanyu Li,Xin Li,Guixia Kang,Ying Han,Ni Shu
出处
期刊:Frontiers in Aging Neuroscience [Frontiers Media]
卷期号:13 被引量:19
标识
DOI:10.3389/fnagi.2021.687927
摘要

Objective Individuals with subjective cognitive decline (SCD) or amnestic mild cognitive impairment (aMCI) represent important targets for the early detection and intervention of Alzheimer’s disease (AD). In this study, we employed a multi-kernel support vector machine (SVM) to examine whether white matter (WM) structural networks can be used for screening SCD and aMCI. Methods A total of 138 right-handed participants [51 normal controls (NC), 36 SCD, 51 aMCI] underwent MRI brain scans. For each participant, three types of WM networks with different edge weights were constructed with diffusion MRI data: fiber number-weighted networks, mean fractional anisotropy-weighted networks, and mean diffusivity (MD)-weighted networks. By employing a multiple-kernel SVM, we seek to integrate information from three weighted networks to improve classification performance. The accuracy of classification between each pair of groups was evaluated via leave-one-out cross-validation. Results For the discrimination between SCD and NC, an area under the curve (AUC) value of 0.89 was obtained, with an accuracy of 83.9%. Further analysis revealed that the methods using three types of WM networks outperformed other methods using single WM network. Moreover, we found that most of discriminative features were from MD-weighted networks, which distributed among frontal lobes. Similar classification performance was also reported in the differentiation between subjects with aMCI and NCs (accuracy = 83.3%). Between SCD and aMCI, an AUC value of 0.72 was obtained, with an accuracy of 72.4%, sensitivity of 74.5% and specificity of 69.4%. The highest accuracy was achieved with features only selected from MD-weighted networks. Conclusion White matter structural network features help machine learning algorithms accurately identify individuals with SCD and aMCI from NCs. Our findings have significant implications for the development of potential brain imaging markers for the early detection of AD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助小张采纳,获得10
刚刚
刚刚
zhaowenxian完成签到,获得积分10
1秒前
1秒前
2秒前
yue完成签到,获得积分10
2秒前
2秒前
春暖花开完成签到,获得积分10
2秒前
JamesPei应助A拉拉拉采纳,获得10
3秒前
lanseyangguang完成签到,获得积分10
3秒前
科研通AI5应助charolte采纳,获得10
3秒前
3秒前
4秒前
4秒前
5秒前
李爱国应助背后城采纳,获得10
5秒前
yunjian1583完成签到,获得积分10
5秒前
香蕉觅云应助松鼠采纳,获得10
6秒前
6秒前
南宫萍发布了新的文献求助10
6秒前
Mr鹿完成签到,获得积分10
7秒前
bkagyin应助高手采纳,获得10
7秒前
7秒前
8秒前
9秒前
11发布了新的文献求助10
9秒前
思源应助轻歌水越采纳,获得10
10秒前
10秒前
NexusExplorer应助周肥木采纳,获得10
10秒前
faye发布了新的文献求助10
11秒前
猫小猪发布了新的文献求助10
11秒前
leekle完成签到,获得积分10
11秒前
CipherSage应助小谢同学采纳,获得10
11秒前
12秒前
12秒前
123完成签到,获得积分10
13秒前
13秒前
付品聪发布了新的文献求助10
14秒前
李健的小迷弟应助xiaoxin采纳,获得10
14秒前
15秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755736
求助须知:如何正确求助?哪些是违规求助? 3298997
关于积分的说明 10108251
捐赠科研通 3013681
什么是DOI,文献DOI怎么找? 1655196
邀请新用户注册赠送积分活动 789635
科研通“疑难数据库(出版商)”最低求助积分说明 753338