Engineered Mechanosensors Inspired by Biological Mechanosensilla

纳米技术 仿生学 材料科学 计算机科学 生化工程 工程类
作者
Qian Wang,Cheng Fan,Yuecheng Gui,Lei Zhang,Junqiu Zhang,Lining Sun,Kejun Wang,Zhiwu Han
出处
期刊:Advanced materials and technologies [Wiley]
卷期号:6 (11) 被引量:23
标识
DOI:10.1002/admt.202100352
摘要

Abstract Bionic engineering provides a promising way for promoting the development of science and technology. Next‐generation diversified mechanosensors that can efficiently sense four types of mechanical signals, including tactile, vibration, air/water flow, and sound, are also benefiting from the bioinspired approach. Natural organisms have evolved sophisticated biological mechanosensilla with excellent performance, such as ultrahigh sensitivity, resolution, stability, anti‐interference, and miniaturization, providing a great deal of inspiration for urgently needed mechanosensors that are difficult to achieve through conventional methods. Here, the recent advances in biological mechanosensilla and corresponding bioinspired mechanosensors are reviewed in detail. According to the classification of the mechanosensilla, i.e., tactile sensilla, vibrational sensilla, flow sensilla, and acoustic sensilla, this review is mainly divided into four parts. In each part, the research on functional mechanisms of the mechanosensilla based on well‐organized mechanosensory micro/nanostructures and unique functional materials, as well as the bionic design strategy and preparative technique of bioinspired mechanosensors are individually summarized and discussed. Meanwhile, insight into the further efforts in comprehensive understanding of the mechanosensilla, learning from the multiperformance integration of sensilla, and establishing the efficient preparation methods for bioinspired mechanosensors is provided, all of which are needed to be addressed urgently before having bioinspired mechanosensors of practical value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助蒋紫妍采纳,获得10
刚刚
wxyshare应助胚芽采纳,获得20
2秒前
soss完成签到,获得积分10
2秒前
等待千筹完成签到,获得积分10
3秒前
zzb完成签到 ,获得积分10
3秒前
爆米花应助难过板栗采纳,获得10
4秒前
4秒前
小蘑菇应助害羞外套采纳,获得10
4秒前
Hello应助fluency采纳,获得10
4秒前
傅剑寒完成签到,获得积分10
5秒前
6秒前
阿德勒发布了新的文献求助10
6秒前
科研通AI2S应助小六九采纳,获得10
6秒前
COSMAO应助雪山飞龙采纳,获得10
7秒前
8秒前
8秒前
浮游应助爱听歌的青筠采纳,获得10
8秒前
王业锦完成签到,获得积分20
9秒前
小白天钓鱼完成签到 ,获得积分10
9秒前
qphys完成签到,获得积分10
10秒前
监督導部完成签到,获得积分10
10秒前
猫猫小队长完成签到,获得积分10
10秒前
11秒前
从容的丹南完成签到 ,获得积分10
11秒前
12秒前
12秒前
12秒前
可爱的函函应助难过板栗采纳,获得10
12秒前
彭于晏应助seasonweng采纳,获得10
12秒前
12秒前
科研通AI6应助曹明佳采纳,获得10
13秒前
13秒前
完美世界214SG给完美世界214SG的求助进行了留言
13秒前
ASIS发布了新的文献求助10
15秒前
Jonah完成签到,获得积分10
15秒前
lmmorz发布了新的文献求助10
16秒前
16秒前
16秒前
CodeCraft应助LiuMeng采纳,获得10
16秒前
蜜环君发布了新的文献求助40
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5195650
求助须知:如何正确求助?哪些是违规求助? 4377568
关于积分的说明 13633116
捐赠科研通 4232906
什么是DOI,文献DOI怎么找? 2321857
邀请新用户注册赠送积分活动 1320084
关于科研通互助平台的介绍 1270495