Automated and real-time validation of gastroesophageal varices under esophagogastroduodenoscopy using a deep convolutional neural network: a multicenter retrospective study (with video)

医学 静脉曲张 食管胃十二指肠镜检查 食管静脉曲张 胃静脉曲张 内科学 胃肠病学 食管 肝硬化 放射科 内窥镜检查 门脉高压
作者
Mingkai Chen,Jing Wang,Yong Xiao,Lianlian Wu,Shan Hu,Shi Chen,Guo-Dong YI,Wei Hu,Xianmu Xie,Yijie Zhu,Yiyun Chen,Yanning Yang,Honggang Yu
出处
期刊:Gastrointestinal Endoscopy [Elsevier]
卷期号:93 (2): 422-432.e3 被引量:29
标识
DOI:10.1016/j.gie.2020.06.058
摘要

Background and Aims Rupture of gastroesophageal varices is the most common fatal adverse event of cirrhosis. EGD is considered the criterion standard for diagnosis and risk stratification of gastroesophageal variceal bleeding. The aim of this study was to train and validate a real-time deep convolutional neural network (DCNN) system, named ENDOANGEL, for diagnosing gastroesophageal varices and predicting the risk of rupture. Methods After training with 8566 images of endoscopic gastroesophageal varices from 3021 patients and 6152 images of normal esophagus/stomach from 3168 patients, ENDOANGEL was also tested with independent images and videos. It was also compared with endoscopists in several aspects. Results ENDOANGEL, in contrast with endoscopists, displayed higher accuracy of 97.00% and 92.00% in terms of detecting esophageal varices (EVs) and gastric varices (GVs) in an image contest (97.00% vs 93.94% , P < .01; 92.00% vs 84.43%, P < .05). It also surpassed endoscopists for red color signs of EVs and red spots of GVs (84.21% vs 73.45%, P < .01; 85.26% vs 77.52%, P < .05). Moreover, ENDOANGEL achieved comparable performance in the determination of size, form, color, and bleeding signs. ENDOANGEL also had good performance in making treatment suggestions. With regard to predicting risk factors in multicenter videos, ENDOANGEL showed great stability. Conclusions Our data suggest that DCNNs were precise in detecting both EVs and GVs and performed excellently in uncovering the endoscopic risk factors of gastroesophageal variceal bleeding. Thus, the application of DCNNs will assist endoscopists in evaluating gastroesophageal varices more objectively and precisely. (Clinical trial registration number: ChiCTR1900023970.) Rupture of gastroesophageal varices is the most common fatal adverse event of cirrhosis. EGD is considered the criterion standard for diagnosis and risk stratification of gastroesophageal variceal bleeding. The aim of this study was to train and validate a real-time deep convolutional neural network (DCNN) system, named ENDOANGEL, for diagnosing gastroesophageal varices and predicting the risk of rupture. After training with 8566 images of endoscopic gastroesophageal varices from 3021 patients and 6152 images of normal esophagus/stomach from 3168 patients, ENDOANGEL was also tested with independent images and videos. It was also compared with endoscopists in several aspects. ENDOANGEL, in contrast with endoscopists, displayed higher accuracy of 97.00% and 92.00% in terms of detecting esophageal varices (EVs) and gastric varices (GVs) in an image contest (97.00% vs 93.94% , P < .01; 92.00% vs 84.43%, P < .05). It also surpassed endoscopists for red color signs of EVs and red spots of GVs (84.21% vs 73.45%, P < .01; 85.26% vs 77.52%, P < .05). Moreover, ENDOANGEL achieved comparable performance in the determination of size, form, color, and bleeding signs. ENDOANGEL also had good performance in making treatment suggestions. With regard to predicting risk factors in multicenter videos, ENDOANGEL showed great stability. Our data suggest that DCNNs were precise in detecting both EVs and GVs and performed excellently in uncovering the endoscopic risk factors of gastroesophageal variceal bleeding. Thus, the application of DCNNs will assist endoscopists in evaluating gastroesophageal varices more objectively and precisely. (Clinical trial registration number: ChiCTR1900023970.)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小伟跑位完成签到,获得积分10
1秒前
忆昔应助zhaozhao采纳,获得10
1秒前
hh发布了新的文献求助10
1秒前
隐形曼青应助xiao123采纳,获得10
1秒前
waynechang完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
FashionBoy应助乔木采纳,获得10
2秒前
2秒前
实验室梅梅完成签到,获得积分10
2秒前
2秒前
jor666发布了新的文献求助10
2秒前
2秒前
2秒前
ak24765发布了新的文献求助10
3秒前
save完成签到,获得积分10
3秒前
3秒前
马孔多暴雨完成签到,获得积分10
3秒前
小马甲应助水123采纳,获得10
3秒前
4秒前
马里奥完成签到,获得积分10
4秒前
5秒前
研友_VZG7GZ应助清蒸鱼采纳,获得10
5秒前
完美冷安完成签到,获得积分10
5秒前
5秒前
6秒前
borisgugugugu完成签到,获得积分10
6秒前
夕沫完成签到,获得积分10
6秒前
林子发布了新的文献求助10
6秒前
李文雨完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
海草不会做题完成签到,获得积分10
7秒前
jlwang发布了新的文献求助10
7秒前
5321发布了新的文献求助10
7秒前
aabbcc完成签到 ,获得积分10
7秒前
ding应助YeeLeeLee采纳,获得10
7秒前
江思可完成签到,获得积分10
8秒前
香蕉醉山发布了新的文献求助10
8秒前
小马甲应助大胆麦片采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665118
求助须知:如何正确求助?哪些是违规求助? 4875227
关于积分的说明 15112135
捐赠科研通 4824320
什么是DOI,文献DOI怎么找? 2582694
邀请新用户注册赠送积分活动 1536665
关于科研通互助平台的介绍 1495279