Automated and real-time validation of gastroesophageal varices under esophagogastroduodenoscopy using a deep convolutional neural network: a multicenter retrospective study (with video)

医学 静脉曲张 食管胃十二指肠镜检查 食管静脉曲张 胃静脉曲张 内科学 胃肠病学 食管 肝硬化 放射科 内窥镜检查 门脉高压
作者
Mingkai Chen,Jing Wang,Yong Xiao,Lianlian Wu,Shan Hu,Shi Chen,Guo-Dong YI,Wei Hu,Xianmu Xie,Yijie Zhu,Yiyun Chen,Yanning Yang,Honggang Yu
出处
期刊:Gastrointestinal Endoscopy [Elsevier]
卷期号:93 (2): 422-432.e3 被引量:19
标识
DOI:10.1016/j.gie.2020.06.058
摘要

Background and Aims Rupture of gastroesophageal varices is the most common fatal adverse event of cirrhosis. EGD is considered the criterion standard for diagnosis and risk stratification of gastroesophageal variceal bleeding. The aim of this study was to train and validate a real-time deep convolutional neural network (DCNN) system, named ENDOANGEL, for diagnosing gastroesophageal varices and predicting the risk of rupture. Methods After training with 8566 images of endoscopic gastroesophageal varices from 3021 patients and 6152 images of normal esophagus/stomach from 3168 patients, ENDOANGEL was also tested with independent images and videos. It was also compared with endoscopists in several aspects. Results ENDOANGEL, in contrast with endoscopists, displayed higher accuracy of 97.00% and 92.00% in terms of detecting esophageal varices (EVs) and gastric varices (GVs) in an image contest (97.00% vs 93.94% , P < .01; 92.00% vs 84.43%, P < .05). It also surpassed endoscopists for red color signs of EVs and red spots of GVs (84.21% vs 73.45%, P < .01; 85.26% vs 77.52%, P < .05). Moreover, ENDOANGEL achieved comparable performance in the determination of size, form, color, and bleeding signs. ENDOANGEL also had good performance in making treatment suggestions. With regard to predicting risk factors in multicenter videos, ENDOANGEL showed great stability. Conclusions Our data suggest that DCNNs were precise in detecting both EVs and GVs and performed excellently in uncovering the endoscopic risk factors of gastroesophageal variceal bleeding. Thus, the application of DCNNs will assist endoscopists in evaluating gastroesophageal varices more objectively and precisely. (Clinical trial registration number: ChiCTR1900023970.) Rupture of gastroesophageal varices is the most common fatal adverse event of cirrhosis. EGD is considered the criterion standard for diagnosis and risk stratification of gastroesophageal variceal bleeding. The aim of this study was to train and validate a real-time deep convolutional neural network (DCNN) system, named ENDOANGEL, for diagnosing gastroesophageal varices and predicting the risk of rupture. After training with 8566 images of endoscopic gastroesophageal varices from 3021 patients and 6152 images of normal esophagus/stomach from 3168 patients, ENDOANGEL was also tested with independent images and videos. It was also compared with endoscopists in several aspects. ENDOANGEL, in contrast with endoscopists, displayed higher accuracy of 97.00% and 92.00% in terms of detecting esophageal varices (EVs) and gastric varices (GVs) in an image contest (97.00% vs 93.94% , P < .01; 92.00% vs 84.43%, P < .05). It also surpassed endoscopists for red color signs of EVs and red spots of GVs (84.21% vs 73.45%, P < .01; 85.26% vs 77.52%, P < .05). Moreover, ENDOANGEL achieved comparable performance in the determination of size, form, color, and bleeding signs. ENDOANGEL also had good performance in making treatment suggestions. With regard to predicting risk factors in multicenter videos, ENDOANGEL showed great stability. Our data suggest that DCNNs were precise in detecting both EVs and GVs and performed excellently in uncovering the endoscopic risk factors of gastroesophageal variceal bleeding. Thus, the application of DCNNs will assist endoscopists in evaluating gastroesophageal varices more objectively and precisely. (Clinical trial registration number: ChiCTR1900023970.)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Orange应助SP-123456采纳,获得10
1秒前
2秒前
3秒前
3秒前
4秒前
希望天下0贩的0应助jerry采纳,获得10
4秒前
vivianzhang完成签到,获得积分10
5秒前
5秒前
轩辕德地完成签到,获得积分10
6秒前
GUGU发布了新的文献求助10
6秒前
时来运转完成签到,获得积分10
7秒前
7秒前
8秒前
高贵紫丝发布了新的文献求助10
8秒前
pear发布了新的文献求助30
9秒前
9秒前
yaya完成签到,获得积分10
9秒前
SP-123456完成签到,获得积分20
10秒前
pyt发布了新的文献求助10
10秒前
10秒前
mint发布了新的文献求助10
13秒前
14秒前
15秒前
SP-123456发布了新的文献求助10
17秒前
风趣谷秋完成签到,获得积分20
17秒前
20秒前
22秒前
华仔应助2021采纳,获得10
23秒前
25秒前
huizi完成签到,获得积分20
25秒前
26秒前
Hello应助GUGU采纳,获得10
26秒前
27秒前
z7777777发布了新的文献求助10
29秒前
30秒前
30秒前
Akim应助橙子采纳,获得10
30秒前
有魅力忆枫关注了科研通微信公众号
31秒前
32秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462411
求助须知:如何正确求助?哪些是违规求助? 3055964
关于积分的说明 9050078
捐赠科研通 2745534
什么是DOI,文献DOI怎么找? 1506438
科研通“疑难数据库(出版商)”最低求助积分说明 696110
邀请新用户注册赠送积分活动 695633