亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automated and real-time validation of gastroesophageal varices under esophagogastroduodenoscopy using a deep convolutional neural network: a multicenter retrospective study (with video)

医学 静脉曲张 食管胃十二指肠镜检查 食管静脉曲张 胃静脉曲张 内科学 胃肠病学 食管 肝硬化 放射科 内窥镜检查 门脉高压
作者
Mingkai Chen,Jing Wang,Yong Xiao,Lianlian Wu,Shan Hu,Shi Chen,Guo-Dong YI,Wei Hu,Xianmu Xie,Yijie Zhu,Yiyun Chen,Yanning Yang,Honggang Yu
出处
期刊:Gastrointestinal Endoscopy [Elsevier]
卷期号:93 (2): 422-432.e3 被引量:29
标识
DOI:10.1016/j.gie.2020.06.058
摘要

Background and Aims Rupture of gastroesophageal varices is the most common fatal adverse event of cirrhosis. EGD is considered the criterion standard for diagnosis and risk stratification of gastroesophageal variceal bleeding. The aim of this study was to train and validate a real-time deep convolutional neural network (DCNN) system, named ENDOANGEL, for diagnosing gastroesophageal varices and predicting the risk of rupture. Methods After training with 8566 images of endoscopic gastroesophageal varices from 3021 patients and 6152 images of normal esophagus/stomach from 3168 patients, ENDOANGEL was also tested with independent images and videos. It was also compared with endoscopists in several aspects. Results ENDOANGEL, in contrast with endoscopists, displayed higher accuracy of 97.00% and 92.00% in terms of detecting esophageal varices (EVs) and gastric varices (GVs) in an image contest (97.00% vs 93.94% , P < .01; 92.00% vs 84.43%, P < .05). It also surpassed endoscopists for red color signs of EVs and red spots of GVs (84.21% vs 73.45%, P < .01; 85.26% vs 77.52%, P < .05). Moreover, ENDOANGEL achieved comparable performance in the determination of size, form, color, and bleeding signs. ENDOANGEL also had good performance in making treatment suggestions. With regard to predicting risk factors in multicenter videos, ENDOANGEL showed great stability. Conclusions Our data suggest that DCNNs were precise in detecting both EVs and GVs and performed excellently in uncovering the endoscopic risk factors of gastroesophageal variceal bleeding. Thus, the application of DCNNs will assist endoscopists in evaluating gastroesophageal varices more objectively and precisely. (Clinical trial registration number: ChiCTR1900023970.) Rupture of gastroesophageal varices is the most common fatal adverse event of cirrhosis. EGD is considered the criterion standard for diagnosis and risk stratification of gastroesophageal variceal bleeding. The aim of this study was to train and validate a real-time deep convolutional neural network (DCNN) system, named ENDOANGEL, for diagnosing gastroesophageal varices and predicting the risk of rupture. After training with 8566 images of endoscopic gastroesophageal varices from 3021 patients and 6152 images of normal esophagus/stomach from 3168 patients, ENDOANGEL was also tested with independent images and videos. It was also compared with endoscopists in several aspects. ENDOANGEL, in contrast with endoscopists, displayed higher accuracy of 97.00% and 92.00% in terms of detecting esophageal varices (EVs) and gastric varices (GVs) in an image contest (97.00% vs 93.94% , P < .01; 92.00% vs 84.43%, P < .05). It also surpassed endoscopists for red color signs of EVs and red spots of GVs (84.21% vs 73.45%, P < .01; 85.26% vs 77.52%, P < .05). Moreover, ENDOANGEL achieved comparable performance in the determination of size, form, color, and bleeding signs. ENDOANGEL also had good performance in making treatment suggestions. With regard to predicting risk factors in multicenter videos, ENDOANGEL showed great stability. Our data suggest that DCNNs were precise in detecting both EVs and GVs and performed excellently in uncovering the endoscopic risk factors of gastroesophageal variceal bleeding. Thus, the application of DCNNs will assist endoscopists in evaluating gastroesophageal varices more objectively and precisely. (Clinical trial registration number: ChiCTR1900023970.)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
111完成签到 ,获得积分10
刚刚
龚广山完成签到,获得积分10
1秒前
逆光完成签到 ,获得积分10
4秒前
shuiyi发布了新的文献求助10
6秒前
怕黑钢笔完成签到 ,获得积分10
11秒前
郭志成完成签到 ,获得积分10
17秒前
库茨库茨完成签到,获得积分10
19秒前
vetzlk完成签到 ,获得积分10
21秒前
李昕123完成签到 ,获得积分10
22秒前
唠叨的逍遥完成签到,获得积分10
23秒前
29秒前
666发布了新的文献求助10
34秒前
大模型应助yuanyuan采纳,获得10
36秒前
bkagyin应助666采纳,获得10
40秒前
ding应助hhh采纳,获得10
48秒前
50秒前
52秒前
Hello应助健忘的板凳采纳,获得10
55秒前
xuanxuan发布了新的文献求助10
55秒前
57秒前
pyh01完成签到 ,获得积分10
1分钟前
万能图书馆应助xuanxuan采纳,获得10
1分钟前
健忘的板凳完成签到,获得积分10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
赘婿应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
我必做出来完成签到,获得积分10
1分钟前
科研通AI6应助烂漫向卉采纳,获得30
1分钟前
小蘑菇应助alex采纳,获得10
1分钟前
1分钟前
1分钟前
yuanyuan发布了新的文献求助10
1分钟前
Yii发布了新的文献求助10
1分钟前
miki完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599674
求助须知:如何正确求助?哪些是违规求助? 4685382
关于积分的说明 14838420
捐赠科研通 4669851
什么是DOI,文献DOI怎么找? 2538158
邀请新用户注册赠送积分活动 1505513
关于科研通互助平台的介绍 1470898