Automated and real-time validation of gastroesophageal varices under esophagogastroduodenoscopy using a deep convolutional neural network: a multicenter retrospective study (with video)

医学 静脉曲张 食管胃十二指肠镜检查 食管静脉曲张 胃静脉曲张 内科学 胃肠病学 食管 肝硬化 放射科 内窥镜检查 门脉高压
作者
Mingkai Chen,Jing Wang,Yong Xiao,Lianlian Wu,Shan Hu,Shi Chen,Guo-Dong YI,Wei Hu,Xianmu Xie,Yijie Zhu,Yiyun Chen,Yanning Yang,Honggang Yu
出处
期刊:Gastrointestinal Endoscopy [Elsevier BV]
卷期号:93 (2): 422-432.e3 被引量:29
标识
DOI:10.1016/j.gie.2020.06.058
摘要

Background and Aims Rupture of gastroesophageal varices is the most common fatal adverse event of cirrhosis. EGD is considered the criterion standard for diagnosis and risk stratification of gastroesophageal variceal bleeding. The aim of this study was to train and validate a real-time deep convolutional neural network (DCNN) system, named ENDOANGEL, for diagnosing gastroesophageal varices and predicting the risk of rupture. Methods After training with 8566 images of endoscopic gastroesophageal varices from 3021 patients and 6152 images of normal esophagus/stomach from 3168 patients, ENDOANGEL was also tested with independent images and videos. It was also compared with endoscopists in several aspects. Results ENDOANGEL, in contrast with endoscopists, displayed higher accuracy of 97.00% and 92.00% in terms of detecting esophageal varices (EVs) and gastric varices (GVs) in an image contest (97.00% vs 93.94% , P < .01; 92.00% vs 84.43%, P < .05). It also surpassed endoscopists for red color signs of EVs and red spots of GVs (84.21% vs 73.45%, P < .01; 85.26% vs 77.52%, P < .05). Moreover, ENDOANGEL achieved comparable performance in the determination of size, form, color, and bleeding signs. ENDOANGEL also had good performance in making treatment suggestions. With regard to predicting risk factors in multicenter videos, ENDOANGEL showed great stability. Conclusions Our data suggest that DCNNs were precise in detecting both EVs and GVs and performed excellently in uncovering the endoscopic risk factors of gastroesophageal variceal bleeding. Thus, the application of DCNNs will assist endoscopists in evaluating gastroesophageal varices more objectively and precisely. (Clinical trial registration number: ChiCTR1900023970.) Rupture of gastroesophageal varices is the most common fatal adverse event of cirrhosis. EGD is considered the criterion standard for diagnosis and risk stratification of gastroesophageal variceal bleeding. The aim of this study was to train and validate a real-time deep convolutional neural network (DCNN) system, named ENDOANGEL, for diagnosing gastroesophageal varices and predicting the risk of rupture. After training with 8566 images of endoscopic gastroesophageal varices from 3021 patients and 6152 images of normal esophagus/stomach from 3168 patients, ENDOANGEL was also tested with independent images and videos. It was also compared with endoscopists in several aspects. ENDOANGEL, in contrast with endoscopists, displayed higher accuracy of 97.00% and 92.00% in terms of detecting esophageal varices (EVs) and gastric varices (GVs) in an image contest (97.00% vs 93.94% , P < .01; 92.00% vs 84.43%, P < .05). It also surpassed endoscopists for red color signs of EVs and red spots of GVs (84.21% vs 73.45%, P < .01; 85.26% vs 77.52%, P < .05). Moreover, ENDOANGEL achieved comparable performance in the determination of size, form, color, and bleeding signs. ENDOANGEL also had good performance in making treatment suggestions. With regard to predicting risk factors in multicenter videos, ENDOANGEL showed great stability. Our data suggest that DCNNs were precise in detecting both EVs and GVs and performed excellently in uncovering the endoscopic risk factors of gastroesophageal variceal bleeding. Thus, the application of DCNNs will assist endoscopists in evaluating gastroesophageal varices more objectively and precisely. (Clinical trial registration number: ChiCTR1900023970.)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
banana完成签到,获得积分10
1秒前
1秒前
1秒前
Yu完成签到,获得积分10
2秒前
3秒前
余喆完成签到,获得积分10
3秒前
3秒前
SciGPT应助decade采纳,获得10
4秒前
张龙雨完成签到 ,获得积分10
5秒前
5秒前
张丹兰完成签到,获得积分10
6秒前
6秒前
6秒前
月儿发布了新的文献求助10
6秒前
oopsabc完成签到,获得积分10
6秒前
sytbb完成签到 ,获得积分10
6秒前
研友_VZG7GZ应助honghong1992采纳,获得10
7秒前
小星星完成签到,获得积分10
7秒前
糊涂的皮卡丘完成签到,获得积分10
7秒前
科研通AI5应助蓝风铃采纳,获得10
7秒前
吃肯德基发布了新的文献求助10
7秒前
口腔溃杨完成签到 ,获得积分10
8秒前
搜集达人应助略略略采纳,获得10
8秒前
图图驳回了Hello应助
9秒前
张丹兰发布了新的文献求助10
9秒前
10秒前
敏感易烟发布了新的文献求助30
10秒前
10秒前
11秒前
如栩发布了新的文献求助10
12秒前
菌菌发布了新的文献求助10
13秒前
耿双贵发布了新的文献求助10
13秒前
hhh完成签到,获得积分10
14秒前
15秒前
chen完成签到,获得积分10
15秒前
16秒前
yml发布了新的文献求助10
17秒前
17秒前
所所应助溪泉采纳,获得10
18秒前
健壮的悟空完成签到 ,获得积分10
19秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
International Handbook of Earthquake & Engineering Seismology, Part B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5146528
求助须知:如何正确求助?哪些是违规求助? 4343439
关于积分的说明 13526708
捐赠科研通 4184572
什么是DOI,文献DOI怎么找? 2294727
邀请新用户注册赠送积分活动 1295166
关于科研通互助平台的介绍 1238264