Diagnostic performance of deep learning models for detecting bone metastasis on whole-body bone scan in prostate cancer

胶水 前列腺癌 医学 骨转移 卷积神经网络 放射科 深度学习 核医学 转移 前列腺 人工智能 癌症 计算机科学 内科学 复合材料 材料科学
作者
Sangwon Han,Jungsu S. Oh,Jong Jin Lee
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Science+Business Media]
卷期号:49 (2): 585-595 被引量:40
标识
DOI:10.1007/s00259-021-05481-2
摘要

We evaluated the performance of deep learning classifiers for bone scans of prostate cancer patients. A total of 9113 consecutive bone scans (5342 prostate cancer patients) were initially evaluated. Bone scans were labeled as positive/negative for bone metastasis using clinical reports and image review for ground truth diagnosis. Two different 2D convolutional neural network (CNN) architectures were proposed: (1) whole body–based (WB) and (2) tandem architectures integrating whole body and local patches, here named as “global–local unified emphasis” (GLUE). Both models were trained using abundant (72%:8%:20% for training:validation:test sets) and limited training data (10%:40%:50%). The allocation of test sets was rotated across all images: therefore, fivefold and twofold cross-validation test results were available for abundant and limited settings, respectively. A total of 2991 positive and 6142 negative bone scans were used as input. For the abundant training setting, the receiver operating characteristics curves of both the GLUE and WB models indicated excellent diagnostic ability in terms of the area under the curve (GLUE: 0.936–0.955, WB: 0.933–0.957, P > 0.05 in four of the fivefold tests). The overall accuracies of the GLUE and WB models were 0.900 and 0.889, respectively. With the limited training setting, the GLUE models showed significantly higher AUCs than the WB models (0.894–0.908 vs. 0.870–0.877, P < 0.0001). Our 2D-CNN models accurately classified bone scans of prostate cancer patients. While both showed excellent performance with the abundant dataset, the GLUE model showed higher performance than the WB model in the limited data setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
高大莺发布了新的文献求助10
1秒前
1秒前
肖雪依发布了新的文献求助10
2秒前
在水一方应助李一帆采纳,获得10
3秒前
3秒前
mianmianyu发布了新的文献求助10
3秒前
夏冉完成签到,获得积分10
3秒前
5秒前
5秒前
5秒前
FashionBoy应助kk采纳,获得10
5秒前
5秒前
黑羽发布了新的文献求助10
7秒前
7秒前
嗯呐完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
zyqi完成签到,获得积分10
9秒前
wang发布了新的文献求助10
10秒前
英吉利25发布了新的文献求助30
11秒前
11秒前
11秒前
打打应助无痕采纳,获得10
12秒前
852应助zyqi采纳,获得10
14秒前
14秒前
1029zx发布了新的文献求助10
14秒前
obsession完成签到 ,获得积分10
15秒前
共享精神应助墨墨叻采纳,获得10
15秒前
wang完成签到,获得积分10
17秒前
17秒前
公孙世往发布了新的文献求助10
17秒前
田様应助jj采纳,获得10
18秒前
18秒前
19秒前
20秒前
一川烟叶发布了新的文献求助10
20秒前
lsd发布了新的文献求助10
20秒前
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952701
求助须知:如何正确求助?哪些是违规求助? 3498211
关于积分的说明 11090706
捐赠科研通 3228753
什么是DOI,文献DOI怎么找? 1785094
邀请新用户注册赠送积分活动 869086
科研通“疑难数据库(出版商)”最低求助积分说明 801350