Diagnostic performance of deep learning models for detecting bone metastasis on whole-body bone scan in prostate cancer

胶水 前列腺癌 医学 骨转移 卷积神经网络 放射科 深度学习 核医学 转移 前列腺 人工智能 癌症 计算机科学 内科学 复合材料 材料科学
作者
Sangwon Han,Jungsu S. Oh,Jong Jin Lee
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Nature]
卷期号:49 (2): 585-595 被引量:33
标识
DOI:10.1007/s00259-021-05481-2
摘要

We evaluated the performance of deep learning classifiers for bone scans of prostate cancer patients. A total of 9113 consecutive bone scans (5342 prostate cancer patients) were initially evaluated. Bone scans were labeled as positive/negative for bone metastasis using clinical reports and image review for ground truth diagnosis. Two different 2D convolutional neural network (CNN) architectures were proposed: (1) whole body–based (WB) and (2) tandem architectures integrating whole body and local patches, here named as “global–local unified emphasis” (GLUE). Both models were trained using abundant (72%:8%:20% for training:validation:test sets) and limited training data (10%:40%:50%). The allocation of test sets was rotated across all images: therefore, fivefold and twofold cross-validation test results were available for abundant and limited settings, respectively. A total of 2991 positive and 6142 negative bone scans were used as input. For the abundant training setting, the receiver operating characteristics curves of both the GLUE and WB models indicated excellent diagnostic ability in terms of the area under the curve (GLUE: 0.936–0.955, WB: 0.933–0.957, P > 0.05 in four of the fivefold tests). The overall accuracies of the GLUE and WB models were 0.900 and 0.889, respectively. With the limited training setting, the GLUE models showed significantly higher AUCs than the WB models (0.894–0.908 vs. 0.870–0.877, P < 0.0001). Our 2D-CNN models accurately classified bone scans of prostate cancer patients. While both showed excellent performance with the abundant dataset, the GLUE model showed higher performance than the WB model in the limited data setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Neinei发布了新的文献求助10
刚刚
1秒前
5秒前
6秒前
8秒前
bkagyin应助鲜艳的冰颜采纳,获得10
9秒前
9秒前
wufabini发布了新的文献求助10
9秒前
Neinei完成签到,获得积分10
11秒前
11秒前
米粒发布了新的文献求助10
11秒前
hbhbj完成签到,获得积分10
12秒前
不倦完成签到,获得积分10
14秒前
资山雁发布了新的文献求助10
15秒前
薰硝壤应助科研螺丝采纳,获得20
16秒前
AFASF完成签到,获得积分20
18秒前
18秒前
IvanMcRae发布了新的文献求助10
18秒前
NexusExplorer应助熊猫盖浇饭采纳,获得10
18秒前
20秒前
20秒前
羽6发布了新的文献求助10
23秒前
wanglu完成签到,获得积分10
24秒前
26秒前
微不足道发布了新的文献求助10
26秒前
一点完成签到 ,获得积分10
26秒前
27秒前
28秒前
29秒前
IvanMcRae完成签到,获得积分10
30秒前
所所应助无敌最俊朗采纳,获得10
30秒前
30秒前
31秒前
涂图完成签到,获得积分10
31秒前
31秒前
hfcao完成签到,获得积分10
32秒前
Akim应助科研通管家采纳,获得10
32秒前
传奇3应助科研通管家采纳,获得10
33秒前
Orange应助科研通管家采纳,获得10
33秒前
田様应助科研通管家采纳,获得10
33秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153361
求助须知:如何正确求助?哪些是违规求助? 2804608
关于积分的说明 7860306
捐赠科研通 2462547
什么是DOI,文献DOI怎么找? 1310806
科研通“疑难数据库(出版商)”最低求助积分说明 629396
版权声明 601794