An Ensemble Learning–Online Semi-Supervised Approach for Vehicle Behavior Recognition

计算机科学 水准点(测量) 聚类分析 人工智能 过程(计算) 样品(材料) 机器学习 监督学习 集合(抽象数据类型) 智能交通系统 集成学习 数据挖掘 模式识别(心理学) 人工神经网络 工程类 土木工程 大地测量学 化学 操作系统 色谱法 程序设计语言 地理
作者
Hailun Zhang,Rui Fu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (8): 10610-10626 被引量:18
标识
DOI:10.1109/tits.2021.3095053
摘要

In autonomous vehicles, recognizing different maneuvering behaviors of surrounding vehicles is crucial to reduce traffic risks and achieve safe path planning. Conventional vehicle behavior recognition methods adopt mainly supervised learning methods and assume that many sample labels are available. However, manual sample labeling is often time-consuming and laborious. Also, onboard sensors collecting surrounding vehicle movement information in data streams often cannot process information in real-time. To tackle these problems, we propose a semi-supervised approach using K-nearest neighbor- ( K-NN )-based ensemble learning to classify the maneuvering behaviors of surrounding vehicles. The framework is divided into three parts: initial model training, online classification, and online model updating. First, k-means clustering of the maneuvering behavior is performed, cluster features are calculated, and a set of micro-clusters is obtained to establish the initial model. Second, the ensemble K-NN -based learning method is used to classify the incoming instances. Finally, the model is updated online using error-driven representative learning and an exponential decay function. Typical lane-changing and turning maneuvers are used as representatives to verify the performance of the proposed method. The data are provided by a next-generation simulation project. The results show that the proposed model achieves highest average recognition accuracy compared with other benchmark methods for the lane-changing and turning maneuvers shortly after the maneuver begins, even for a small sample size.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
科研通AI2S应助高迪采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
gxudmy发布了新的文献求助10
1秒前
1秒前
2秒前
谦让碧菡完成签到,获得积分10
2秒前
酷酷阑香发布了新的文献求助10
3秒前
cetomacrogol发布了新的文献求助30
4秒前
5秒前
su发布了新的文献求助10
6秒前
斯文败类应助饼饼采纳,获得10
6秒前
我是波少发布了新的文献求助10
6秒前
思源应助看看采纳,获得10
6秒前
木木完成签到,获得积分10
6秒前
无限向珊发布了新的文献求助10
6秒前
cat_head发布了新的文献求助10
6秒前
Sugar发布了新的文献求助10
6秒前
7秒前
ljy完成签到,获得积分20
7秒前
bkagyin应助aabb采纳,获得10
7秒前
8秒前
8秒前
走着走着就散了完成签到,获得积分10
9秒前
Hoshi关注了科研通微信公众号
10秒前
针不戳发布了新的文献求助10
10秒前
852应助林莹采纳,获得10
10秒前
烟花应助滕擎采纳,获得10
11秒前
11秒前
多喝水完成签到,获得积分10
11秒前
wangyizhuo完成签到,获得积分10
11秒前
12秒前
fu发布了新的文献求助10
12秒前
14秒前
baobao完成签到,获得积分10
14秒前
www发布了新的文献求助50
14秒前
14秒前
南汉高贵的陈皮完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Ride comfort analysis of hydro-pneumatic suspension considering variable damping matched with dynamitic load 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4587994
求助须知:如何正确求助?哪些是违规求助? 4003679
关于积分的说明 12394679
捐赠科研通 3680211
什么是DOI,文献DOI怎么找? 2028553
邀请新用户注册赠送积分活动 1062040
科研通“疑难数据库(出版商)”最低求助积分说明 948062