An Ensemble Learning–Online Semi-Supervised Approach for Vehicle Behavior Recognition

计算机科学 水准点(测量) 聚类分析 人工智能 过程(计算) 样品(材料) 机器学习 监督学习 集合(抽象数据类型) 智能交通系统 集成学习 数据挖掘 模式识别(心理学) 人工神经网络 工程类 化学 土木工程 大地测量学 色谱法 程序设计语言 地理 操作系统
作者
Hailun Zhang,Rui Fu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (8): 10610-10626 被引量:18
标识
DOI:10.1109/tits.2021.3095053
摘要

In autonomous vehicles, recognizing different maneuvering behaviors of surrounding vehicles is crucial to reduce traffic risks and achieve safe path planning. Conventional vehicle behavior recognition methods adopt mainly supervised learning methods and assume that many sample labels are available. However, manual sample labeling is often time-consuming and laborious. Also, onboard sensors collecting surrounding vehicle movement information in data streams often cannot process information in real-time. To tackle these problems, we propose a semi-supervised approach using K-nearest neighbor- ( K-NN )-based ensemble learning to classify the maneuvering behaviors of surrounding vehicles. The framework is divided into three parts: initial model training, online classification, and online model updating. First, k-means clustering of the maneuvering behavior is performed, cluster features are calculated, and a set of micro-clusters is obtained to establish the initial model. Second, the ensemble K-NN -based learning method is used to classify the incoming instances. Finally, the model is updated online using error-driven representative learning and an exponential decay function. Typical lane-changing and turning maneuvers are used as representatives to verify the performance of the proposed method. The data are provided by a next-generation simulation project. The results show that the proposed model achieves highest average recognition accuracy compared with other benchmark methods for the lane-changing and turning maneuvers shortly after the maneuver begins, even for a small sample size.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
向日葵发布了新的文献求助10
1秒前
科研通AI6应助JJJ采纳,获得10
5秒前
5秒前
jf关注了科研通微信公众号
6秒前
金条完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
要减肥白开水完成签到,获得积分10
9秒前
ChristineJay完成签到,获得积分10
9秒前
20010完成签到,获得积分10
10秒前
SixDogs发布了新的文献求助13
11秒前
11秒前
搞笑地雷完成签到 ,获得积分10
11秒前
11完成签到,获得积分10
12秒前
贺格平发布了新的文献求助10
12秒前
小董完成签到,获得积分20
15秒前
BENpao123发布了新的文献求助10
15秒前
所所应助无问西东采纳,获得10
16秒前
16秒前
17秒前
bombing2048完成签到 ,获得积分10
18秒前
Hello应助谦让寄容采纳,获得10
18秒前
香蕉觅云应助Wenyilong采纳,获得10
18秒前
20秒前
lml发布了新的文献求助10
20秒前
21秒前
21秒前
21秒前
刻苦秋尽完成签到,获得积分20
21秒前
空白发布了新的文献求助10
21秒前
justin完成签到,获得积分10
22秒前
22秒前
23秒前
23秒前
科研通AI6应助lex采纳,获得10
23秒前
24秒前
Darius发布了新的文献求助10
25秒前
25秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342574
求助须知:如何正确求助?哪些是违规求助? 4478451
关于积分的说明 13939383
捐赠科研通 4375015
什么是DOI,文献DOI怎么找? 2403911
邀请新用户注册赠送积分活动 1396509
关于科研通互助平台的介绍 1368648