A group decision making method to manage internal and external experts with an application to anti-lung cancer drug selection

计算机科学 群体决策 背景(考古学) 选择(遗传算法) 授权 知识管理 肺癌 风险分析(工程) 管理科学 医学 人工智能 心理学 政治学 社会心理学 工程类 古生物学 法学 内科学 生物
作者
Xiaofang Li,Huchang Liao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:183: 115379-115379 被引量:16
标识
DOI:10.1016/j.eswa.2021.115379
摘要

With the changes of lifestyle and environment of people, the incidence rate of lung cancer has increased year by year, and lung cancer has become one of the most malignant tumors that threaten the health of people. Within this context, choosing appropriate anti-lung cancer drugs is of great significance for the treatment of lung cancer patients. To improve the accuracy of anti-lung cancer drug selection, it is necessary to invite many experts to participate in the evaluation process, and such a selection process can be regarded as a large-scale group decision-making problem. In existing group decision-making models, there are two hypotheses: one assumed that all experts are independent, while the other assumed that experts have certain relationships. However, in practical decision-making problems involving both internal and external experts, it is common that only some experts have mutual relationships. To address this issue, this paper proposes a large-scale group decision-making model considering the trust relationship between a set of experts. We divide experts into internal experts and external experts. The internal experts are supposed to be not independent of each other due to trust relationships, and we analyze the relationships between internal experts through the DEMATEL method. The external experts are supposed to be independent of each other. Considering the non-cooperative behaviors of experts, we provide a confidence-based adaptive consensus reaching mechanism for internal experts and a delegation-based adaptive consensus reaching mechanism for external experts. The two expert panels reach consensus through their separate consensus reaching mechanisms, and the moderator determines the optimal alternative by combining the final opinions of the two expert panels. Finally, an illustrative example about the selection of anti-non-small cell lung cancer drugs is presented to show the validity and practicality of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
1秒前
GGbond完成签到,获得积分10
2秒前
阿幽完成签到 ,获得积分10
3秒前
情怀应助追寻麦片采纳,获得10
3秒前
单纯面包发布了新的文献求助10
3秒前
huahero2025发布了新的文献求助10
3秒前
5秒前
mufcyang完成签到,获得积分10
6秒前
酷波er应助彪壮的明轩采纳,获得10
6秒前
lxf发布了新的文献求助10
6秒前
风中的元菱完成签到,获得积分10
8秒前
11秒前
paopao完成签到 ,获得积分10
12秒前
852应助单纯面包采纳,获得10
17秒前
现代夏青完成签到 ,获得积分10
19秒前
充电宝应助科研通管家采纳,获得30
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
小蘑菇应助科研通管家采纳,获得10
21秒前
小二郎应助科研通管家采纳,获得10
21秒前
赘婿应助科研通管家采纳,获得10
21秒前
赘婿应助科研通管家采纳,获得10
21秒前
21秒前
脑洞疼应助科研通管家采纳,获得10
21秒前
ww应助能干夏波采纳,获得10
22秒前
27秒前
27秒前
所所应助深霖阳光采纳,获得30
28秒前
笑点低凌珍完成签到 ,获得积分10
30秒前
30秒前
冷傲山彤发布了新的文献求助10
31秒前
乐乐乐完成签到,获得积分10
34秒前
西西发布了新的文献求助10
34秒前
SYLH应助拼搏奇异果采纳,获得10
35秒前
所所应助深霖阳光采纳,获得30
38秒前
FashionBoy应助迅速的网络采纳,获得10
38秒前
39秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738374
求助须知:如何正确求助?哪些是违规求助? 3281845
关于积分的说明 10026729
捐赠科研通 2998684
什么是DOI,文献DOI怎么找? 1645363
邀请新用户注册赠送积分活动 782749
科研通“疑难数据库(出版商)”最低求助积分说明 749901