Remote Sensing Image Change Detection with Transformers

变压器 人工智能 多光谱图像
作者
Hao Chen,Zipeng Qi,Zhenwei Shi
出处
期刊:arXiv: Computer Vision and Pattern Recognition 被引量:5
标识
DOI:10.1109/tgrs.2021.3095166
摘要

Modern change detection (CD) has achieved remarkable success by the powerful discriminative ability of deep convolutions. However, high-resolution remote sensing CD remains challenging due to the complexity of objects in the scene. Objects with the same semantic concept may show distinct spectral characteristics at different times and spatial locations. Most recent CD pipelines using pure convolutions are still struggling to relate long-range concepts in space-time. Non-local self-attention approaches show promising performance via modeling dense relations among pixels, yet are computationally inefficient. Here, we propose a bitemporal image transformer (BIT) to efficiently and effectively model contexts within the spatial-temporal domain. Our intuition is that the high-level concepts of the change of interest can be represented by a few visual words, i.e., semantic tokens. To achieve this, we express the bitemporal image into a few tokens, and use a transformer encoder to model contexts in the compact token-based space-time. The learned context-rich tokens are then feedback to the pixel-space for refining the original features via a transformer decoder. We incorporate BIT in a deep feature differencing-based CD framework. Extensive experiments on three CD datasets demonstrate the effectiveness and efficiency of the proposed method. Notably, our BIT-based model significantly outperforms the purely convolutional baseline using only 3 times lower computational costs and model parameters. Based on a naive backbone (ResNet18) without sophisticated structures (e.g., FPN, UNet), our model surpasses several state-of-the-art CD methods, including better than four recent attention-based methods in terms of efficiency and accuracy. Our code is available at this https URL\_CD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
festum完成签到,获得积分10
2秒前
火星上的寻双完成签到,获得积分10
4秒前
Guoyeye发布了新的文献求助10
4秒前
奔跑的小鹰完成签到,获得积分10
5秒前
sci完成签到,获得积分10
5秒前
田様应助臭宝大迷弟采纳,获得10
7秒前
马克图布完成签到,获得积分10
8秒前
糕手糕手糕糕手应助Blue采纳,获得10
9秒前
9秒前
9秒前
可爱的函函应助芷兰丁香采纳,获得10
10秒前
10秒前
12秒前
12秒前
阿宝关注了科研通微信公众号
13秒前
LiuH发布了新的文献求助10
13秒前
13秒前
leeky完成签到,获得积分20
13秒前
15秒前
tanjuan发布了新的文献求助10
15秒前
平淡驳完成签到 ,获得积分10
16秒前
16秒前
古月发布了新的文献求助10
16秒前
17秒前
fifteen应助敏敏采纳,获得10
18秒前
codemath发布了新的文献求助10
18秒前
华仔应助12采纳,获得10
19秒前
科研通AI2S应助001采纳,获得10
20秒前
安戈发布了新的文献求助10
21秒前
21秒前
24秒前
Jasper应助马听云采纳,获得10
25秒前
26秒前
hukun发布了新的文献求助10
26秒前
LiuH完成签到,获得积分20
27秒前
小天使完成签到,获得积分20
27秒前
27秒前
笨笨甜瓜发布了新的文献求助30
27秒前
嗨哈尼发布了新的文献求助10
28秒前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207318
求助须知:如何正确求助?哪些是违规求助? 2856706
关于积分的说明 8106534
捐赠科研通 2521854
什么是DOI,文献DOI怎么找? 1355242
科研通“疑难数据库(出版商)”最低求助积分说明 642199
邀请新用户注册赠送积分活动 613478