材料科学
催化作用
合理设计
纳米技术
氧还原反应
析氧
分子
电催化剂
Atom(片上系统)
组合化学
计算机科学
化学
电化学
电极
物理化学
有机化学
嵌入式系统
作者
Yao Wang,Dingsheng Wang,Yadong Li
标识
DOI:10.1002/adma.202008151
摘要
Atomically dispersed metal-based electrocatalysts have attracted increasing attention due to their nearly 100% atomic utilization and excellent catalytic performance. However, current fundamental comprehension and summaries to reveal the underlying relationship between single-atom site electrocatalysts (SACs) and corresponding catalytic application are rarely reported. Herein, the fundamental understandings and intrinsic mechanisms underlying SACs and corresponding electrocatalytic applications are systemically summarized. Different preparation strategies are presented to reveal the synthetic strategies with engineering the well-defined SACs on the basis of theoretical principle (size effect, metal-support interactions, electronic structure effect, and coordination environment effect). Then, an overview of the electrocatalytic applications is presented, including oxygen reduction reaction, hydrogen evolution reaction, oxygen evolution reaction, oxidation of small organic molecules, carbon dioxide reduction reaction, and nitrogen reduction reaction. The underlying structure-performance relationship between SACs and electrocatalytic reactions is also discussed in depth to expound the enhancement mechanisms. Finally, a summary is provided and a perspective supplied to demonstrate the current challenges and opportunities for rational designing, synthesizing, and modulating the advanced SACs toward electrocatalytic reactions.
科研通智能强力驱动
Strongly Powered by AbleSci AI