The good and bad of adipose tissue macrophage exosomes in obesity

脂肪组织 炎症 微泡 脂肪组织巨噬细胞 巨噬细胞 平衡 葡萄糖稳态 内分泌学 内科学 脂肪细胞 胰岛素 骨髓 外体 细胞生物学 胰岛素抵抗 生物 肥胖 医学 白色脂肪组织 细胞外小泡 脂肪因子 脂肪生成 小RNA 生物化学 体外 基因
作者
Andrew S. Greenberg,Andrew R. Reeves
出处
期刊:Cell Metabolism [Elsevier]
卷期号:33 (4): 700-702 被引量:7
标识
DOI:10.1016/j.cmet.2021.03.011
摘要

Adipose tissue macrophages regulate adipose tissue inflammation and systemic insulin-glucose homeostasis. In a recent study by Ying et al., 2021Ying W. Gao H. Dos Reis F.C.G. Bandyopadhyay G. Ofrecio J.M. Luo Z. Ji Y. Jin Z. Ly C. Olefsky J.M. MiR-690, an exosomal-derived miRNA from M2-polarized macrophages, improves insulin sensitivity in obese mice.Cell Metab. 2021; 33 (this issue): 781-790Abstract Full Text Full Text PDF PubMed Scopus (32) Google Scholar, M2 polarized bone marrow-derived macrophages secreted exosomes containing miR-690 that, when administered to obese mice, improved glucose-insulin homeostasis. miR-690 reduced expression of Nadk, which decreased inflammation and improved insulin signaling. Adipose tissue macrophages regulate adipose tissue inflammation and systemic insulin-glucose homeostasis. In a recent study by Ying et al., 2021Ying W. Gao H. Dos Reis F.C.G. Bandyopadhyay G. Ofrecio J.M. Luo Z. Ji Y. Jin Z. Ly C. Olefsky J.M. MiR-690, an exosomal-derived miRNA from M2-polarized macrophages, improves insulin sensitivity in obese mice.Cell Metab. 2021; 33 (this issue): 781-790Abstract Full Text Full Text PDF PubMed Scopus (32) Google Scholar, M2 polarized bone marrow-derived macrophages secreted exosomes containing miR-690 that, when administered to obese mice, improved glucose-insulin homeostasis. miR-690 reduced expression of Nadk, which decreased inflammation and improved insulin signaling. Obesity is a major risk factor for the development of insulin resistance that promotes the development of type 2 diabetes mellitus (T2DM). Chronic low-grade inflammation is thought to promote the alterations in insulin-glucose homeostasis associated with obesity (Saltiel and Olefsky, 2017Saltiel A.R. Olefsky J.M. Inflammatory mechanisms linking obesity and metabolic disease.J. Clin. Invest. 2017; 127: 1-4Crossref PubMed Scopus (709) Google Scholar). An important initial observation was that increased levels of inflammatory cytokines, such as tumor necrosis factor-α and interleukin-6, in adipose tissue of obese mice and humans were found to contribute to insulin resistance (Fried et al., 1998Fried S.K. Bunkin D.A. Greenberg A.S. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid.J. Clin. Endocrinol. Metab. 1998; 83: 847-850Crossref PubMed Scopus (1392) Google Scholar; Hotamisligil et al., 1993Hotamisligil G.S. Shargill N.S. Spiegelman B.M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance.Science. 1993; 259: 87-91Crossref PubMed Scopus (5876) Google Scholar; Perry et al., 2015Perry R.J. Camporez J.G. Kursawe R. Titchenell P.M. Zhang D. Perry C.J. Jurczak M.J. Abudukadier A. Han M.S. Zhang X.M. et al.Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes.Cell. 2015; 160: 745-758Abstract Full Text Full Text PDF PubMed Scopus (389) Google Scholar). Subsequently, it was observed that an influx of proinflammatory macrophages into adipose tissue was a significant contributor to adipose tissue and obesity-associated insulin resistance (Lumeng et al., 2007Lumeng C.N. Deyoung S.M. Bodzin J.L. Saltiel A.R. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity.Diabetes. 2007; 56: 16-23Crossref PubMed Scopus (737) Google Scholar; Weisberg et al., 2003Weisberg S.P. McCann D. Desai M. Rosenbaum M. Leibel R.L. Ferrante Jr., A.W. Obesity is associated with macrophage accumulation in adipose tissue.J. Clin. Invest. 2003; 112: 1796-1808Crossref PubMed Scopus (7054) Google Scholar). More recently, a new mechanistic pathway involving secretion of exosomes by adipose tissue macrophages (ATMs) was found to regulate metabolic and inflammatory interactions between adipocytes and macrophages as well as distal tissues (Ying et al., 2017Ying W. Riopel M. Bandyopadhyay G. Dong Y. Birmingham A. Seo J.B. Ofrecio J.M. Wollam J. Hernandez-Carretero A. Fu W. et al.Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity.Cell. 2017; 171: 372-384.e12Abstract Full Text Full Text PDF PubMed Scopus (507) Google Scholar). Exosomes are small (50–200 nm) extracellular vesicles surrounded by a phospholipid bilayer that carries the molecular components of one cell to another. As such, exosomes can transmit a broad range of molecular signals through exchange of lipids, proteins, and nucleic acids. For example, adipocytes have been found to secrete lipid-laden exosomes expressing the lipid droplet-associated protein perilipin1, phospholipids, neutral lipids, and free cholesterol that are taken up by ATMs and can induce differentiation of bone marrow-derived precursor cells into ATM-like cells (Flaherty et al., 2019Flaherty 3rd, S.E. Grijalva A. Xu X. Ables E. Nomani A. Ferrante Jr., A.W. A lipase-independent pathway of lipid release and immune modulation by adipocytes.Science. 2019; 363: 989-993Crossref PubMed Scopus (141) Google Scholar). Recently, exosomes have been found to carry both mRNA and microRNAs (miRNAs) that can modify gene expression of the recipient cells, which has increased interest in the effects of exosomes in metabolic disorders. miRNAs are expressed first as a single strand of RNA, called pre-miRNA (or pri-miRNA), that anneals to itself and is then cleaved by Dicer, which results in double-stranded RNA (O’Brien et al., 2018O’Brien J. Hayder H. Zayed Y. Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation.Front. Endocrinol. (Lausanne). 2018; 9: 402Crossref PubMed Scopus (1134) Google Scholar). The double-stranded RNA is separated by argonaute to produce a mature miRNA-argonaute complex. The binding of the miRNA to argonaute allows it to be trafficked the endosome where it can be packaged within exosomes that make up the multi-vesicular body (MVB) (Siomi and Siomi, 2009Siomi H. Siomi M.C. RISC hitches onto endosome trafficking.Nat. Cell Biol. 2009; 11: 1049-1051Crossref PubMed Scopus (37) Google Scholar) (Figure 1). The MVB can then fuse with the cytoplasmic membrane to release the exosomes. In the obese state, macrophages within adipose tissue, liver, and skeletal muscle promote insulin resistance. Macrophages can be classified based upon their inflammatory phenotype; namely, in obesity the ATMs are predominantly pro-inflammatory, M1-like macrophages, whereas in lean individuals adipose tissue contains anti-inflammatory, M2-like macrophages. Interestingly, Ying et al. made the novel observation that ATMs taken from obese mice on a high-fat diet (HFD) produced exosomes that contained increased levels of miR-155. The exosomes were isolated and injected into lean mice, which increased insulin resistance and localized in adipose tissue, liver, and muscle (Ying et al., 2017Ying W. Riopel M. Bandyopadhyay G. Dong Y. Birmingham A. Seo J.B. Ofrecio J.M. Wollam J. Hernandez-Carretero A. Fu W. et al.Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity.Cell. 2017; 171: 372-384.e12Abstract Full Text Full Text PDF PubMed Scopus (507) Google Scholar). Mice with miR-155 knockout were significantly more sensitive to insulin when on an HFD, even in the absence of body weight changes. Building upon these studies, in this issue of Cell Metabolism, Ying et al. treated bone marrow-derived macrophages (BMDMs) with IL-4 and IL-13 to generate M2 BMDMs and then isolated the secreted exosomes (Ying et al., 2021Ying W. Gao H. Dos Reis F.C.G. Bandyopadhyay G. Ofrecio J.M. Luo Z. Ji Y. Jin Z. Ly C. Olefsky J.M. MiR-690, an exosomal-derived miRNA from M2-polarized macrophages, improves insulin sensitivity in obese mice.Cell Metab. 2021; 33 (this issue): 781-790Abstract Full Text Full Text PDF PubMed Scopus (32) Google Scholar). Notably, injection of the secreted exosomes from M2 macrophages into obese mice improved insulin-glucose homeostasis without affecting adiposity. In vitro studies confirmed that the exosomes were taken up and improved insulin action in 3T3-L1 adipocytes, L6 myocytes, and isolated mouse hepatocytes. To confirm that miRNAs were causing the insulin sensitivity, they used mice with a knockout of Dicer, which eliminated all miRNAs from the exosomes produced by the M2 BMDMs, and as a result these exosomes failed to improve insulin resistance when injected in obese mice. The authors demonstrated that the M2 BMDM-derived exosomes contained high levels of miR-690 and, when the exosomes were injected, this miRNA was taken up in the relevant metabolic tissues. To more precisely confirm the role of miR-690, Ying et al. generated an miR-690 “mimic” that was mixed with Invivofectamine and injected into obese mice. The miR-690 mimic localized in adipose tissue, liver, and skeletal muscle, where it improved insulin-glucose homeostasis. Using the TargetScan 7.2 algorithms to predict mRNA targets of miR-690, as well as several in vitro experiments, the researchers demonstrated that the 3′ UTR of the gene Nadk is a target of miR-690. Nadk is a gene that encodes an NAD+ kinase. To confirm a potential role for Nadk in insulin action, the authors used siRNA against Nadk to reduce its expression in 3T3-L1 adipocytes and mouse hepatocytes and found that knockdown improved insulin action. These exciting observations that macrophage exosomes regulate tissue and systemic insulin-glucose homeostasis, and specifically that miR-690 acts as an insulin sensitizer, raise several important questions. One question that arises is whether macrophages in liver, adipose tissue, and skeletal muscle all express the same miRNAs in exosomes, or if ATM exosomes and their associated miRNAs specifically circulated to liver and skeletal muscle to alter tissue specific and systemic metabolism. Additionally, are there other miRNAs in exosomes from macrophages that are yet to be identified that have important metabolic roles? How is the expression of other genes effected by miR-155 and miR-690 and do the exosome exert cell- and tissue-specific actions? Furthermore, the mechanistic pathway for how Nadk regulates insulin resistance is unknown. Nadk phosphorylates NAD+ to generate NADP+, which is further reduced to NADPH for reductive anabolism. Insulin can stimulate the phosphorylation of Nadk, activating it and leading to increased production of NADP+. The Ying et al. paper did not investigate whether the knockdown of Nadk led to a decrease in NADP+ or increased levels of NAD+ (by preventing the conversion of NAD+ to NADP+), which will be an important avenue of future research as increased NAD+ has been shown to improve many metabolic functions. These findings are also of interest for its potential clinical implications in that Nadk, being a kinase, is an enzyme that should be easily targetable by small-molecule drugs. A.S.G. is supported by ARS Project 8050-51000-097-02S, P30DK046200 , DK108722 , R21HD098056 , and the Robert C. and Veronica Atkins Foundation . The authors declare no competing interests. MiR-690, an exosomal-derived miRNA from M2-polarized macrophages, improves insulin sensitivity in obese miceYing et al.Cell MetabolismJanuary 14, 2021In BriefMiscommunication between adipose tissue macrophages (ATMs) and insulin target tissues is key to the development of insulin resistance, while it is known that lean ATM-derived exosomes promote insulin sensitivity. Here, Ying et. al show that miR-690 within ATM-derived exosomes directly increases insulin sensitivity both in vitro and in vivo. Full-Text PDF
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咕噜快逃完成签到,获得积分10
1秒前
cruise完成签到,获得积分10
1秒前
烟花应助默默采纳,获得10
1秒前
整齐的蜻蜓完成签到,获得积分10
1秒前
Lucas应助Mrdu采纳,获得10
2秒前
2秒前
Shumin Wang发布了新的文献求助10
2秒前
干净的向真完成签到,获得积分10
2秒前
边缘之上完成签到,获得积分10
4秒前
1111完成签到,获得积分10
4秒前
4秒前
超级绫完成签到 ,获得积分10
4秒前
lwl完成签到,获得积分10
4秒前
Nancy完成签到,获得积分10
4秒前
小张就瞅瞅完成签到 ,获得积分10
5秒前
5秒前
顾矜应助谨慎珊采纳,获得10
5秒前
6秒前
英俊的铭应助Amy采纳,获得30
7秒前
8秒前
木子弓长发布了新的文献求助10
9秒前
WWXWWX发布了新的文献求助10
10秒前
ye完成签到,获得积分10
10秒前
饿m完成签到 ,获得积分10
11秒前
蔡蔡不菜菜完成签到,获得积分10
11秒前
yuuuuuuu完成签到,获得积分10
11秒前
百十余完成签到,获得积分10
12秒前
tzk发布了新的文献求助10
13秒前
认真子默完成签到,获得积分10
13秒前
Lucas应助有魅力友梅采纳,获得10
14秒前
科研通AI2S应助百事采纳,获得10
15秒前
单纯草丛完成签到,获得积分10
15秒前
idynamics关注了科研通微信公众号
15秒前
田様应助123采纳,获得10
15秒前
15秒前
16秒前
边缘之上发布了新的文献求助20
17秒前
英俊的铭应助WWXWWX采纳,获得10
17秒前
36456657应助nani采纳,获得10
17秒前
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147171
求助须知:如何正确求助?哪些是违规求助? 2798462
关于积分的说明 7829305
捐赠科研通 2455179
什么是DOI,文献DOI怎么找? 1306639
科研通“疑难数据库(出版商)”最低求助积分说明 627858
版权声明 601567