A multi-type features fusion neural network for blood pressure prediction based on photoplethysmography

光容积图 血压 人工神经网络 计算机科学 人工智能 卷积神经网络 模式识别(心理学) 深度学习 医疗器械 信号(编程语言) 医学 心脏病学 内科学 电信 无线 程序设计语言
作者
Meng Rong,Kaiyang Li
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:68: 102772-102772 被引量:49
标识
DOI:10.1016/j.bspc.2021.102772
摘要

Blood pressure monitoring is very important for the prevention of cardiovascular diseases. In this paper, we proposed a multi-type features fusion (MTFF) neural network model for blood pressure (BP) prediction based on photoplethysmography (PPG). The model includes two convolutional neural networks (CNN) which used to train the morphological and frequency spectrum features of PPG signal, and one Bi-directional long short term memory (BLSTM) network which used to train the temporal features of PPG signal. These multi-features were fused through a specific fusion module after training, so more information of PPG signals were obtained and the hidden relationship between the fused features and blood pressure was established. The standard deviation (STD) and mean absolute error (MAE) of the fusion model are 7.25 mmHg and 5.59 mmHg respectively for systolic blood pressure (SBP), 4.48 mmHg and 3.36 mmHg respectively for diastolic blood pressure (DBP). The results are in full compliance with the Advancement of Medical Instrumentation (AAMI) and the British Hypertension Society (BHS) international standards. We conclude that the MTFF neural network proposed in this paper can accurately predict blood pressure. The significant difference from the traditional methods of BP prediction based on manual calculation of features is that our method automatically extracts PPG features through the deep learning model which can easily handle the complicated and tedious calculation. Compared with other similar BP prediction methods based on deep learning, three different features are trained and fused, which further improves the accuracy of BP prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助七寻采纳,获得10
1秒前
1秒前
仲谋给仲谋的求助进行了留言
1秒前
千折完成签到 ,获得积分10
2秒前
2秒前
yunii发布了新的文献求助10
3秒前
蜡笔小新发布了新的文献求助10
3秒前
英俊的铭应助苹果采纳,获得10
3秒前
4秒前
chenm0333042完成签到,获得积分10
4秒前
Polar_bear完成签到,获得积分10
4秒前
专注若之完成签到,获得积分10
4秒前
完美世界应助大意的酒窝采纳,获得10
6秒前
ZJING9发布了新的文献求助10
7秒前
7秒前
银鱼在游发布了新的文献求助10
7秒前
大个应助longbowtom采纳,获得10
7秒前
NotToday发布了新的文献求助10
8秒前
小小淑完成签到,获得积分20
8秒前
9秒前
10秒前
脑洞疼应助ohooo采纳,获得10
10秒前
HT完成签到,获得积分10
10秒前
11秒前
11秒前
浮游应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
SciGPT应助科研通管家采纳,获得10
12秒前
asdfzxcv应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
sevenhill应助科研通管家采纳,获得10
13秒前
科研通AI6应助NotToday采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646337
求助须知:如何正确求助?哪些是违规求助? 4771156
关于积分的说明 15034647
捐赠科研通 4805157
什么是DOI,文献DOI怎么找? 2569497
邀请新用户注册赠送积分活动 1526514
关于科研通互助平台的介绍 1485836