A multi-type features fusion neural network for blood pressure prediction based on photoplethysmography

光容积图 血压 人工神经网络 计算机科学 人工智能 卷积神经网络 模式识别(心理学) 深度学习 医疗器械 信号(编程语言) 医学 心脏病学 内科学 电信 无线 程序设计语言
作者
Meng Rong,Kaiyang Li
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:68: 102772-102772 被引量:49
标识
DOI:10.1016/j.bspc.2021.102772
摘要

Blood pressure monitoring is very important for the prevention of cardiovascular diseases. In this paper, we proposed a multi-type features fusion (MTFF) neural network model for blood pressure (BP) prediction based on photoplethysmography (PPG). The model includes two convolutional neural networks (CNN) which used to train the morphological and frequency spectrum features of PPG signal, and one Bi-directional long short term memory (BLSTM) network which used to train the temporal features of PPG signal. These multi-features were fused through a specific fusion module after training, so more information of PPG signals were obtained and the hidden relationship between the fused features and blood pressure was established. The standard deviation (STD) and mean absolute error (MAE) of the fusion model are 7.25 mmHg and 5.59 mmHg respectively for systolic blood pressure (SBP), 4.48 mmHg and 3.36 mmHg respectively for diastolic blood pressure (DBP). The results are in full compliance with the Advancement of Medical Instrumentation (AAMI) and the British Hypertension Society (BHS) international standards. We conclude that the MTFF neural network proposed in this paper can accurately predict blood pressure. The significant difference from the traditional methods of BP prediction based on manual calculation of features is that our method automatically extracts PPG features through the deep learning model which can easily handle the complicated and tedious calculation. Compared with other similar BP prediction methods based on deep learning, three different features are trained and fused, which further improves the accuracy of BP prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一包辣条完成签到,获得积分10
刚刚
mika910完成签到 ,获得积分10
1秒前
1秒前
1秒前
1秒前
daSB完成签到,获得积分20
2秒前
赵小胖完成签到,获得积分10
2秒前
自觉石头发布了新的文献求助10
2秒前
2秒前
3秒前
bluekids发布了新的文献求助50
3秒前
LDL完成签到,获得积分10
4秒前
怕孤独的忆南完成签到,获得积分10
4秒前
热情醉山完成签到,获得积分10
4秒前
4秒前
星河梦枕完成签到,获得积分10
6秒前
PHHHH发布了新的文献求助10
7秒前
7秒前
暖暖完成签到,获得积分10
7秒前
7秒前
7秒前
张天完成签到,获得积分10
7秒前
星辰大海应助汤姆猫采纳,获得10
7秒前
8秒前
zsfxqq完成签到 ,获得积分10
8秒前
SciGPT应助点心采纳,获得10
8秒前
9秒前
Hou发布了新的文献求助20
9秒前
yjjin发布了新的文献求助10
9秒前
科目三应助菠萝贝采纳,获得10
10秒前
Zero_榊啸号完成签到,获得积分10
10秒前
11秒前
陶远望完成签到,获得积分0
11秒前
望除完成签到,获得积分10
11秒前
微笑完成签到,获得积分10
11秒前
悦耳冷松发布了新的文献求助10
11秒前
zh发布了新的文献求助10
12秒前
实验大牛完成签到,获得积分10
12秒前
非常完成签到,获得积分10
12秒前
11235应助JayceHe采纳,获得10
13秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585147
求助须知:如何正确求助?哪些是违规求助? 4668950
关于积分的说明 14773671
捐赠科研通 4616972
什么是DOI,文献DOI怎么找? 2530364
邀请新用户注册赠送积分活动 1499158
关于科研通互助平台的介绍 1467659