A multi-type features fusion neural network for blood pressure prediction based on photoplethysmography

光容积图 血压 人工神经网络 计算机科学 人工智能 卷积神经网络 模式识别(心理学) 深度学习 医疗器械 信号(编程语言) 医学 心脏病学 内科学 电信 无线 程序设计语言
作者
Meng Rong,Kaiyang Li
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:68: 102772-102772 被引量:49
标识
DOI:10.1016/j.bspc.2021.102772
摘要

Blood pressure monitoring is very important for the prevention of cardiovascular diseases. In this paper, we proposed a multi-type features fusion (MTFF) neural network model for blood pressure (BP) prediction based on photoplethysmography (PPG). The model includes two convolutional neural networks (CNN) which used to train the morphological and frequency spectrum features of PPG signal, and one Bi-directional long short term memory (BLSTM) network which used to train the temporal features of PPG signal. These multi-features were fused through a specific fusion module after training, so more information of PPG signals were obtained and the hidden relationship between the fused features and blood pressure was established. The standard deviation (STD) and mean absolute error (MAE) of the fusion model are 7.25 mmHg and 5.59 mmHg respectively for systolic blood pressure (SBP), 4.48 mmHg and 3.36 mmHg respectively for diastolic blood pressure (DBP). The results are in full compliance with the Advancement of Medical Instrumentation (AAMI) and the British Hypertension Society (BHS) international standards. We conclude that the MTFF neural network proposed in this paper can accurately predict blood pressure. The significant difference from the traditional methods of BP prediction based on manual calculation of features is that our method automatically extracts PPG features through the deep learning model which can easily handle the complicated and tedious calculation. Compared with other similar BP prediction methods based on deep learning, three different features are trained and fused, which further improves the accuracy of BP prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助cc采纳,获得10
1秒前
小二郎应助026采纳,获得10
1秒前
1秒前
采花大盗发布了新的文献求助10
2秒前
猩猿鸡完成签到,获得积分20
3秒前
4秒前
平凡之路发布了新的文献求助10
4秒前
YIlia发布了新的文献求助10
4秒前
斯文败类应助da采纳,获得10
4秒前
CAOHOU应助无情修杰采纳,获得10
5秒前
5秒前
6秒前
Bruce发布了新的文献求助10
6秒前
7秒前
SHAO应助17861433618采纳,获得10
8秒前
9秒前
Jing发布了新的文献求助10
9秒前
猩猿鸡发布了新的文献求助20
9秒前
10秒前
科研通AI2S应助阿海采纳,获得10
10秒前
传奇3应助阿海采纳,获得10
10秒前
科研通AI2S应助阿海采纳,获得10
10秒前
美丽的安完成签到,获得积分10
11秒前
小马甲应助chen采纳,获得10
11秒前
天天快乐应助izumi采纳,获得10
11秒前
平凡之路完成签到,获得积分10
11秒前
田様应助迷路的指甲油采纳,获得10
12秒前
就爱从黑巧完成签到,获得积分10
12秒前
12秒前
14秒前
14秒前
落后项链发布了新的文献求助10
14秒前
15秒前
15秒前
万坤完成签到,获得积分10
15秒前
闹南南发布了新的文献求助10
15秒前
烟花应助UniTTEC9560采纳,获得10
16秒前
SciGPT应助科研通管家采纳,获得10
17秒前
ding应助科研通管家采纳,获得10
17秒前
djiwisksk66应助科研通管家采纳,获得10
17秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979242
求助须知:如何正确求助?哪些是违规求助? 3523187
关于积分的说明 11216570
捐赠科研通 3260615
什么是DOI,文献DOI怎么找? 1800151
邀请新用户注册赠送积分活动 878854
科研通“疑难数据库(出版商)”最低求助积分说明 807099