A multi-type features fusion neural network for blood pressure prediction based on photoplethysmography

光容积图 血压 人工神经网络 计算机科学 人工智能 卷积神经网络 模式识别(心理学) 深度学习 医疗器械 信号(编程语言) 医学 心脏病学 内科学 电信 无线 程序设计语言
作者
Meng Rong,Kaiyang Li
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:68: 102772-102772 被引量:49
标识
DOI:10.1016/j.bspc.2021.102772
摘要

Blood pressure monitoring is very important for the prevention of cardiovascular diseases. In this paper, we proposed a multi-type features fusion (MTFF) neural network model for blood pressure (BP) prediction based on photoplethysmography (PPG). The model includes two convolutional neural networks (CNN) which used to train the morphological and frequency spectrum features of PPG signal, and one Bi-directional long short term memory (BLSTM) network which used to train the temporal features of PPG signal. These multi-features were fused through a specific fusion module after training, so more information of PPG signals were obtained and the hidden relationship between the fused features and blood pressure was established. The standard deviation (STD) and mean absolute error (MAE) of the fusion model are 7.25 mmHg and 5.59 mmHg respectively for systolic blood pressure (SBP), 4.48 mmHg and 3.36 mmHg respectively for diastolic blood pressure (DBP). The results are in full compliance with the Advancement of Medical Instrumentation (AAMI) and the British Hypertension Society (BHS) international standards. We conclude that the MTFF neural network proposed in this paper can accurately predict blood pressure. The significant difference from the traditional methods of BP prediction based on manual calculation of features is that our method automatically extracts PPG features through the deep learning model which can easily handle the complicated and tedious calculation. Compared with other similar BP prediction methods based on deep learning, three different features are trained and fused, which further improves the accuracy of BP prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sopha完成签到,获得积分10
刚刚
刚刚
rorocris发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
烟花应助伶俐的采枫采纳,获得10
2秒前
coco关注了科研通微信公众号
3秒前
所爱皆在发布了新的文献求助10
3秒前
4秒前
4秒前
NexusExplorer应助花生采纳,获得10
5秒前
内向灵凡发布了新的文献求助10
5秒前
科研通AI2S应助jennyyu采纳,获得10
5秒前
等等发布了新的文献求助10
6秒前
共享精神应助橘子采纳,获得10
6秒前
Fen3i发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
小二郎应助lk采纳,获得10
7秒前
我是老大应助乌云采纳,获得10
7秒前
Achhz关注了科研通微信公众号
7秒前
8秒前
Akim应助李栗子采纳,获得10
8秒前
容二遥完成签到,获得积分10
9秒前
呆萌的白竹完成签到,获得积分10
9秒前
建建完成签到,获得积分10
9秒前
NI发布了新的文献求助10
9秒前
9秒前
10秒前
曹俊蔚发布了新的文献求助10
10秒前
思源应助霞霞采纳,获得10
10秒前
derlun发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
Orange应助Poker采纳,获得30
12秒前
Akim应助Fen3i采纳,获得10
12秒前
隐形曼青应助迷路千秋采纳,获得10
12秒前
5114发布了新的文献求助10
12秒前
所所应助aayy采纳,获得10
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049