A multi-type features fusion neural network for blood pressure prediction based on photoplethysmography

光容积图 血压 人工神经网络 计算机科学 人工智能 卷积神经网络 模式识别(心理学) 深度学习 医疗器械 信号(编程语言) 医学 心脏病学 内科学 电信 无线 程序设计语言
作者
Meng Rong,Kaiyang Li
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:68: 102772-102772 被引量:49
标识
DOI:10.1016/j.bspc.2021.102772
摘要

Blood pressure monitoring is very important for the prevention of cardiovascular diseases. In this paper, we proposed a multi-type features fusion (MTFF) neural network model for blood pressure (BP) prediction based on photoplethysmography (PPG). The model includes two convolutional neural networks (CNN) which used to train the morphological and frequency spectrum features of PPG signal, and one Bi-directional long short term memory (BLSTM) network which used to train the temporal features of PPG signal. These multi-features were fused through a specific fusion module after training, so more information of PPG signals were obtained and the hidden relationship between the fused features and blood pressure was established. The standard deviation (STD) and mean absolute error (MAE) of the fusion model are 7.25 mmHg and 5.59 mmHg respectively for systolic blood pressure (SBP), 4.48 mmHg and 3.36 mmHg respectively for diastolic blood pressure (DBP). The results are in full compliance with the Advancement of Medical Instrumentation (AAMI) and the British Hypertension Society (BHS) international standards. We conclude that the MTFF neural network proposed in this paper can accurately predict blood pressure. The significant difference from the traditional methods of BP prediction based on manual calculation of features is that our method automatically extracts PPG features through the deep learning model which can easily handle the complicated and tedious calculation. Compared with other similar BP prediction methods based on deep learning, three different features are trained and fused, which further improves the accuracy of BP prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喵喵发布了新的文献求助10
1秒前
2秒前
2秒前
大气魂幽发布了新的文献求助10
3秒前
孤舟完成签到,获得积分10
5秒前
Orange应助yy采纳,获得10
5秒前
阔达如松完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
仁爱行云发布了新的文献求助10
6秒前
爱吃糖的虎纹猫咪完成签到,获得积分10
7秒前
真实的一鸣完成签到,获得积分10
7秒前
psycho完成签到,获得积分10
8秒前
科研通AI6.1应助哆来米采纳,获得10
8秒前
9秒前
9秒前
闪闪凝冬完成签到,获得积分10
9秒前
小城完成签到 ,获得积分20
10秒前
11秒前
Alicia完成签到,获得积分10
11秒前
zcxxxxxxx完成签到,获得积分10
12秒前
走心君完成签到,获得积分10
13秒前
百羊发布了新的文献求助10
13秒前
hubanj完成签到,获得积分10
14秒前
哟梦完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
18秒前
19秒前
Owen应助Feng采纳,获得10
21秒前
宅心仁厚完成签到 ,获得积分10
21秒前
21秒前
didilucky完成签到,获得积分10
22秒前
目土土完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
22秒前
挽风完成签到 ,获得积分10
22秒前
22秒前
牧尔芙发布了新的文献求助10
24秒前
24秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735237
求助须知:如何正确求助?哪些是违规求助? 5359154
关于积分的说明 15328898
捐赠科研通 4879502
什么是DOI,文献DOI怎么找? 2622007
邀请新用户注册赠送积分活动 1571188
关于科研通互助平台的介绍 1527971