亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A multi-type features fusion neural network for blood pressure prediction based on photoplethysmography

光容积图 血压 人工神经网络 计算机科学 人工智能 卷积神经网络 模式识别(心理学) 深度学习 医疗器械 信号(编程语言) 医学 心脏病学 内科学 电信 无线 程序设计语言
作者
Meng Rong,Kaiyang Li
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:68: 102772-102772 被引量:49
标识
DOI:10.1016/j.bspc.2021.102772
摘要

Blood pressure monitoring is very important for the prevention of cardiovascular diseases. In this paper, we proposed a multi-type features fusion (MTFF) neural network model for blood pressure (BP) prediction based on photoplethysmography (PPG). The model includes two convolutional neural networks (CNN) which used to train the morphological and frequency spectrum features of PPG signal, and one Bi-directional long short term memory (BLSTM) network which used to train the temporal features of PPG signal. These multi-features were fused through a specific fusion module after training, so more information of PPG signals were obtained and the hidden relationship between the fused features and blood pressure was established. The standard deviation (STD) and mean absolute error (MAE) of the fusion model are 7.25 mmHg and 5.59 mmHg respectively for systolic blood pressure (SBP), 4.48 mmHg and 3.36 mmHg respectively for diastolic blood pressure (DBP). The results are in full compliance with the Advancement of Medical Instrumentation (AAMI) and the British Hypertension Society (BHS) international standards. We conclude that the MTFF neural network proposed in this paper can accurately predict blood pressure. The significant difference from the traditional methods of BP prediction based on manual calculation of features is that our method automatically extracts PPG features through the deep learning model which can easily handle the complicated and tedious calculation. Compared with other similar BP prediction methods based on deep learning, three different features are trained and fused, which further improves the accuracy of BP prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
岂曰无衣发布了新的文献求助10
2秒前
小六子完成签到,获得积分10
14秒前
思源应助岂曰无衣采纳,获得10
16秒前
22秒前
22秒前
35秒前
38秒前
47秒前
47秒前
Scheduling完成签到 ,获得积分10
1分钟前
Charles完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
Akim应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助无心的善愁采纳,获得10
2分钟前
Chen完成签到 ,获得积分10
3分钟前
3分钟前
郭敬一发布了新的文献求助10
3分钟前
嘻嘻完成签到,获得积分10
3分钟前
郭敬一完成签到,获得积分10
4分钟前
4分钟前
4分钟前
Chris发布了新的文献求助10
4分钟前
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
5分钟前
是真的完成签到 ,获得积分10
5分钟前
852应助sujinyu采纳,获得10
5分钟前
6分钟前
6分钟前
sujinyu发布了新的文献求助10
6分钟前
xmsyq完成签到 ,获得积分10
7分钟前
小丑鱼儿完成签到 ,获得积分10
7分钟前
得咎完成签到 ,获得积分10
7分钟前
bjcyqz完成签到,获得积分10
7分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780506
求助须知:如何正确求助?哪些是违规求助? 5656754
关于积分的说明 15453250
捐赠科研通 4911100
什么是DOI,文献DOI怎么找? 2643307
邀请新用户注册赠送积分活动 1590976
关于科研通互助平台的介绍 1545479