已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

AGTOC: A novel approach to winter wheat mapping by automatic generation of training samples and one-class classification on Google Earth Engine

支持向量机 基本事实 遥感 人工智能 地球观测 机器学习 计算机科学 地理 地图学 工程类 卫星 航空航天工程
作者
Gaoxiang Yang,YU Wei-guo,Xia Yao,Hengbiao Zheng,Qiang Cao,Yan Zhu,Weixing Cao,Tao Cheng
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:102: 102446-102446 被引量:50
标识
DOI:10.1016/j.jag.2021.102446
摘要

Accurate and timely acquisition of crop spatial distribution is a prerequisite for growth monitoring and yield forecasting. Currently, the automatic acquisition of crop distribution at large scales is still a challenge due to the time-consuming processing of remotely sensed imagery and manual collection of sufficient training samples. Although the advent of cloud computing platforms has proved to improve the efficiency and automation of crop type classification, how to obtain sufficient training samples in an efficient and cost-effective way remains unclear. In this research, we developed a new approach integrating the automatic generation of training samples and one-class machine learning classification (AGTOC) for mapping winter wheat over Jiangsu Province, China on Google Earth Engine (GEE). After extracting spatial objects from Sentinel-2 imagery in the season of 2017–2018, this method performed recognition of winter wheat objects based on the unique phenology and spectral features of winter wheat. Then the generated winter wheat objects were further refined and regarded as training samples for provincial winter wheat classification with one-class support vector machine (OCSVM). Furthermore, the transferability of AGTOC was evaluated by applying the classification approach to different seasons (2016–2017 & 2019–2020) and a different sensor (Landsat-8 OLI). According to independent ground truth data, the winter wheat mapping with AGTOC achieved an overall accuracy (OA) of 92.61%. When compared with agricultural census data, the winter wheat area accounted for 99% and 90% of the variability at the municipal and county levels. Furthermore, the OA achieved 88.94% and 90.17% while transferring the AGTOC from 2017–2018 to 2016–2017 and 2019–2020. The transferability of the AGTOC model to Landsat-8 OLI imagery of the same season yielded an OA of 85.98%. These results demonstrated that AGTOC exhibited high efficiency and accuracy across the province, different seasons and sensors without the need of extensive field visits for training sample collection. This proposed approach has great potential in the automatic mapping of winter wheat on GEE at country or global levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗯嗯嗯完成签到 ,获得积分20
刚刚
rid4iuclous2完成签到 ,获得积分10
3秒前
科研狗发布了新的文献求助20
3秒前
莫名乐乐完成签到,获得积分10
5秒前
Jackylee完成签到,获得积分10
6秒前
斯文败类应助TTT0530采纳,获得10
6秒前
1111完成签到 ,获得积分10
6秒前
允胖胖完成签到 ,获得积分10
7秒前
1111关注了科研通微信公众号
11秒前
13秒前
楼醉山完成签到,获得积分10
15秒前
科研通AI2S应助郜雨寒采纳,获得10
15秒前
庄默羽发布了新的文献求助10
18秒前
李加一完成签到 ,获得积分10
18秒前
情怀应助sjxx采纳,获得10
19秒前
21秒前
nadia完成签到,获得积分10
31秒前
32秒前
微笑的冥幽完成签到,获得积分20
32秒前
33秒前
Sanqainli发布了新的文献求助10
33秒前
34秒前
34秒前
37秒前
倔驴发布了新的文献求助10
38秒前
小马甲应助欣慰问凝采纳,获得30
38秒前
youkekyt发布了新的文献求助10
38秒前
39秒前
40秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
40秒前
LILI完成签到 ,获得积分10
41秒前
42秒前
Sanqainli完成签到,获得积分10
43秒前
TTT0530发布了新的文献求助10
43秒前
44秒前
庄默羽完成签到,获得积分10
46秒前
紫色风铃发布了新的文献求助10
48秒前
可爱的函函应助花花521采纳,获得10
49秒前
喔喔佳佳L完成签到 ,获得积分10
49秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139400
求助须知:如何正确求助?哪些是违规求助? 2790323
关于积分的说明 7794903
捐赠科研通 2446762
什么是DOI,文献DOI怎么找? 1301366
科研通“疑难数据库(出版商)”最低求助积分说明 626153
版权声明 601141