Machine learning algorithm improves accuracy of ortho-K lens fitting in vision shaping treatment

算法 人工智能 支持向量机 机器学习 数学 曲率 一致性(知识库) 高斯曲率 计算机科学 核(代数) 几何学 组合数学
作者
Yuzhuo Fan,Zekuan Yu,Tao Tang,Xiao Liu,Qiong Xu,Zisu Peng,Yan Li,Kai Wang,Jia Qu,Mingwei Zhao
出处
期刊:Contact Lens and Anterior Eye [Elsevier BV]
卷期号:45 (3): 101474-101474 被引量:22
标识
DOI:10.1016/j.clae.2021.101474
摘要

To construct a machine learning (ML)-based model for estimating the alignment curve (AC) curvature in orthokeratology lens fitting for vision shaping treatment (VST), which can minimize the number of lens trials, improving efficiency while maintaining accuracy, with regards to its improvement over a previous calculation method.Data were retrospectively collected from the clinical case files of 1271 myopic subjects (1271 right eyes). The AC curvatures calculated with a previously published algorithm were used as the target data sets. Four kinds of machine learning algorithms were implemented in the experimental analyses to predict the targeted AC curvatures: robust linear regression models, support vector machine (SVM) regression models with linear kernel functions, bagging decision trees, and Gaussian processes. The previously published calculation method and the novel machine learning method were then compared to assess the final parameters of ordered lenses.The linear SVM and Gaussian process machine learning models achieved the best performance. The input variables included sex, age, horizontal visible iris diameter (HVID), spherical refraction (SER), cylindrical refraction, eccentricity value (e value), flat K (K1) and steep K (K2) readings, anterior chamber depth (ACD), and axial length (AL). The R-squared values for the output AC1K1, AC1K2 and AC2K1 values were 0.91, 0.84, and 0.73, respectively. The previous calculation method and machine learning methods displayed excellent consistency, and the proposed methods performed best based on flat K reading and e values.The ML model can provide practitioners with an efficient method for estimating the AC curvatures of VST lenses and reducing the probability of cross-infection originating from trial lenses, which is especially useful during pandemics, such as that for COVID-19.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷你小五完成签到,获得积分10
2秒前
9202211125完成签到,获得积分10
3秒前
W1ll完成签到,获得积分10
4秒前
文静的谷菱完成签到,获得积分10
4秒前
微笑的若魔完成签到 ,获得积分10
4秒前
王易云完成签到,获得积分10
5秒前
5秒前
my196755完成签到,获得积分10
5秒前
jiao发布了新的文献求助30
5秒前
ki完成签到 ,获得积分10
5秒前
万能图书馆应助CR采纳,获得10
6秒前
852应助杨枝甘露加雪糕采纳,获得10
6秒前
illiterate完成签到,获得积分10
6秒前
TEDDY完成签到,获得积分10
6秒前
7秒前
8秒前
温暖的涵易应助美满平灵采纳,获得30
8秒前
CodeCraft应助李双艳采纳,获得10
9秒前
9秒前
wxy完成签到,获得积分10
9秒前
落月铭完成签到,获得积分10
10秒前
Hello应助peikyang采纳,获得10
10秒前
danan发布了新的文献求助10
10秒前
energyharvester完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
丫头完成签到 ,获得积分10
11秒前
小五完成签到,获得积分10
11秒前
常常完成签到 ,获得积分10
11秒前
Rondab应助z不停采纳,获得10
12秒前
msy完成签到,获得积分10
13秒前
勤劳绿毛龟完成签到,获得积分10
13秒前
14秒前
gc发布了新的文献求助10
14秒前
SYLH应助天然呆的最可爱采纳,获得10
14秒前
limay完成签到 ,获得积分10
15秒前
苗条辣条完成签到 ,获得积分10
15秒前
15秒前
zimu012完成签到,获得积分10
16秒前
生动的踏歌完成签到,获得积分10
16秒前
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953597
求助须知:如何正确求助?哪些是违规求助? 3499217
关于积分的说明 11094578
捐赠科研通 3229785
什么是DOI,文献DOI怎么找? 1785744
邀请新用户注册赠送积分活动 869499
科研通“疑难数据库(出版商)”最低求助积分说明 801478