Machine learning algorithm improves accuracy of ortho-K lens fitting in vision shaping treatment

算法 人工智能 支持向量机 机器学习 数学 曲率 一致性(知识库) 高斯曲率 计算机科学 核(代数) 几何学 组合数学
作者
Yuzhuo Fan,Zekuan Yu,Tao Tang,Xiao Liu,Qiong Xu,Zisu Peng,Yan Li,Kai Wang,Jia Qu,Mingwei Zhao
出处
期刊:Contact Lens and Anterior Eye [Elsevier]
卷期号:45 (3): 101474-101474 被引量:11
标识
DOI:10.1016/j.clae.2021.101474
摘要

To construct a machine learning (ML)-based model for estimating the alignment curve (AC) curvature in orthokeratology lens fitting for vision shaping treatment (VST), which can minimize the number of lens trials, improving efficiency while maintaining accuracy, with regards to its improvement over a previous calculation method.Data were retrospectively collected from the clinical case files of 1271 myopic subjects (1271 right eyes). The AC curvatures calculated with a previously published algorithm were used as the target data sets. Four kinds of machine learning algorithms were implemented in the experimental analyses to predict the targeted AC curvatures: robust linear regression models, support vector machine (SVM) regression models with linear kernel functions, bagging decision trees, and Gaussian processes. The previously published calculation method and the novel machine learning method were then compared to assess the final parameters of ordered lenses.The linear SVM and Gaussian process machine learning models achieved the best performance. The input variables included sex, age, horizontal visible iris diameter (HVID), spherical refraction (SER), cylindrical refraction, eccentricity value (e value), flat K (K1) and steep K (K2) readings, anterior chamber depth (ACD), and axial length (AL). The R-squared values for the output AC1K1, AC1K2 and AC2K1 values were 0.91, 0.84, and 0.73, respectively. The previous calculation method and machine learning methods displayed excellent consistency, and the proposed methods performed best based on flat K reading and e values.The ML model can provide practitioners with an efficient method for estimating the AC curvatures of VST lenses and reducing the probability of cross-infection originating from trial lenses, which is especially useful during pandemics, such as that for COVID-19.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拼搏尔风完成签到,获得积分10
5秒前
Hello应助duonicola采纳,获得10
5秒前
Zzz完成签到,获得积分10
8秒前
爱静静应助晴栀采纳,获得10
9秒前
Amancio118完成签到 ,获得积分10
11秒前
eee完成签到,获得积分10
11秒前
TAA66完成签到,获得积分10
11秒前
bobochi完成签到 ,获得积分10
12秒前
Nan完成签到,获得积分10
12秒前
梓泽丘墟应助迅速的寻绿采纳,获得20
12秒前
李爱国应助Viva采纳,获得10
17秒前
XH完成签到,获得积分10
22秒前
无味完成签到,获得积分10
24秒前
冬雪完成签到 ,获得积分10
24秒前
26秒前
myg123完成签到 ,获得积分10
26秒前
坦率的惊蛰完成签到,获得积分10
27秒前
JasVe完成签到 ,获得积分10
27秒前
服部平次发布了新的文献求助10
29秒前
yingzaifeixiang完成签到 ,获得积分10
31秒前
高大绝义完成签到,获得积分10
31秒前
35秒前
jyy完成签到,获得积分10
36秒前
xxy发布了新的文献求助10
40秒前
范先生完成签到,获得积分10
42秒前
细心的老头完成签到 ,获得积分10
46秒前
Aaron_Chia完成签到 ,获得积分10
48秒前
繁荣的柏柳完成签到,获得积分10
49秒前
1459完成签到,获得积分10
51秒前
踏雪飞鸿完成签到,获得积分10
51秒前
yym完成签到,获得积分10
51秒前
臭皮完成签到,获得积分10
54秒前
周涛完成签到,获得积分10
55秒前
skepticalsnails完成签到,获得积分10
57秒前
无花果应助Viva采纳,获得10
59秒前
精明芷巧完成签到 ,获得积分10
1分钟前
Aloha完成签到 ,获得积分10
1分钟前
1分钟前
王灿灿完成签到,获得积分10
1分钟前
yun完成签到,获得积分10
1分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162430
求助须知:如何正确求助?哪些是违规求助? 2813350
关于积分的说明 7900043
捐赠科研通 2472900
什么是DOI,文献DOI怎么找? 1316594
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602155