Machine learning algorithm improves accuracy of ortho-K lens fitting in vision shaping treatment

算法 人工智能 支持向量机 机器学习 数学 曲率 一致性(知识库) 高斯曲率 计算机科学 核(代数) 几何学 组合数学
作者
Yuzhuo Fan,Zekuan Yu,Tao Tang,Xiao Liu,Qiong Xu,Zisu Peng,Yan Li,Kai Wang,Jia Qu,Mingwei Zhao
出处
期刊:Contact Lens and Anterior Eye [Elsevier]
卷期号:45 (3): 101474-101474 被引量:27
标识
DOI:10.1016/j.clae.2021.101474
摘要

To construct a machine learning (ML)-based model for estimating the alignment curve (AC) curvature in orthokeratology lens fitting for vision shaping treatment (VST), which can minimize the number of lens trials, improving efficiency while maintaining accuracy, with regards to its improvement over a previous calculation method.Data were retrospectively collected from the clinical case files of 1271 myopic subjects (1271 right eyes). The AC curvatures calculated with a previously published algorithm were used as the target data sets. Four kinds of machine learning algorithms were implemented in the experimental analyses to predict the targeted AC curvatures: robust linear regression models, support vector machine (SVM) regression models with linear kernel functions, bagging decision trees, and Gaussian processes. The previously published calculation method and the novel machine learning method were then compared to assess the final parameters of ordered lenses.The linear SVM and Gaussian process machine learning models achieved the best performance. The input variables included sex, age, horizontal visible iris diameter (HVID), spherical refraction (SER), cylindrical refraction, eccentricity value (e value), flat K (K1) and steep K (K2) readings, anterior chamber depth (ACD), and axial length (AL). The R-squared values for the output AC1K1, AC1K2 and AC2K1 values were 0.91, 0.84, and 0.73, respectively. The previous calculation method and machine learning methods displayed excellent consistency, and the proposed methods performed best based on flat K reading and e values.The ML model can provide practitioners with an efficient method for estimating the AC curvatures of VST lenses and reducing the probability of cross-infection originating from trial lenses, which is especially useful during pandemics, such as that for COVID-19.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
于瑜与余发布了新的文献求助10
1秒前
1秒前
元谷雪发布了新的文献求助10
1秒前
2秒前
3秒前
自然听兰发布了新的文献求助10
3秒前
Jerryis发布了新的文献求助10
4秒前
5秒前
共享精神应助李耀京采纳,获得30
5秒前
5秒前
黄诗淇完成签到,获得积分10
6秒前
6秒前
123456发布了新的文献求助10
6秒前
6秒前
漱泉枕石发布了新的文献求助10
7秒前
7秒前
Lucas应助俊逸的三毒采纳,获得10
7秒前
有风的地方完成签到 ,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
CodeCraft应助YY再摆烂采纳,获得10
9秒前
9秒前
wzhang发布了新的文献求助10
10秒前
11秒前
11秒前
www发布了新的文献求助10
11秒前
11秒前
夏姬宁静完成签到,获得积分10
11秒前
wisdomjun发布了新的文献求助10
11秒前
12秒前
wang发布了新的文献求助10
12秒前
hhllhh完成签到,获得积分10
12秒前
13秒前
Ruan完成签到,获得积分10
13秒前
随性发布了新的文献求助10
13秒前
14秒前
14秒前
Tomato发布了新的文献求助10
14秒前
14秒前
赘婿应助万灵竹采纳,获得10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277