已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Reducing N2O emissions while maintaining yield in a wheat–maize rotation system modelled by APSIM

环境科学 旋转(数学) 旋转系统 温室气体 产量(工程) 农业工程 农学 数学 氮气 生态学 物理 工程类 量子力学 生物 几何学 冶金 材料科学
作者
Jianzheng Li,Ligang Wang,Zhongkui Luo,Enli Wang,Guocheng Wang,Han Zhou,Hu Li,Shutao Xu
出处
期刊:Agricultural Systems [Elsevier]
卷期号:194: 103277-103277 被引量:10
标识
DOI:10.1016/j.agsy.2021.103277
摘要

Modelling approaches have already been used to quantitatively assess the trade-offs between crop yield and N 2 O emissions as impacted by management practices. However, the model's performance in terms of predicting N 2 O emissions was mainly assessed against total emissions per growing season or year, which may reduce accuracy in modelling due to the uncertainties in total emissions estimated using the manual (static) chamber method. Here, a comparison between optimizations for Agricultural Production Systems sIMulator (APSIM) with total N 2 O emissions and daily N 2 O emissions was conducted. We further used the validated model to develop simple surrogate models for estimating total N 2 O emissions in different years and target potential opportunities to reduce N 2 O emissions while still maintaining the grain yield under long-term climatic conditions. Five parameters relating to denitrification and nitrification were optimized using differential evolution algorithm for global optimization based on two-year field experimental data at Huantai site in North China Plain, and comprehensive simulation experiments were further conducted under long-term climate variability in an irrigated wheat–maize rotation system. The method of Levenberg-Marquardt was implemented to fit simple surrogate models for estimating total N 2 O emissions in different years, and Analysis of Variance was used for model comparison. APSIM model optimized with daily N 2 O emissions could better simulate soil N 2 O and nitrate dynamics than that optimized with total N 2 O emissions. We obtained the posterior distributions of five key parameters to which N 2 O emissions are sensitive, and demonstrated that original model using default parameters could underestimate the rate of nitrification and denitrification and the subsequent N 2 O emissions. Total N 2 O emissions increased exponentially with nitrogen application rate and mean temperature, and IPCC (1% emission factor) could underestimate whole-year N 2 O emissions when N rate was higher than the optimized nitrogen rate for crop production. We also found that there was potential to optimize nitrogen fertiliser rate to reduce N 2 O emissions while still maintaining crop yield in the irrigated wheat–maize rotation system. This study demonstrated the necessity of optimization with daily N 2 O emissions in improving model accuracy, and the posterior distributions of five parameters relating to N 2 O emissions offered reference range for future model improvement and applications. • Crop yield and soil N 2 O emissions were studied using a modelling approach. • APSIM could more accurately model soil N 2 O and nitrate dynamics when five related parameters were optimized with daily N 2 O emissions. • Posterior distributions of five parameters controlling N 2 O dynamics were obtained. • Total N 2 O emissions increased exponentially with N rate and mean temperature. • N rate could be reduced by 19% without sacrificing crop yield, which in turn led to a reduction of N 2 O emissions by 34%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
素月分辉发布了新的文献求助10
1秒前
哈哈完成签到,获得积分10
1秒前
懦弱的乐蕊完成签到 ,获得积分10
1秒前
脉动发布了新的文献求助30
2秒前
3秒前
4秒前
端庄之云完成签到,获得积分20
5秒前
5秒前
凳凳子完成签到,获得积分10
7秒前
痴情的明辉完成签到 ,获得积分10
8秒前
9秒前
wsy77关注了科研通微信公众号
9秒前
端庄之云发布了新的文献求助10
9秒前
二十又澪发布了新的文献求助10
9秒前
素月分辉完成签到,获得积分10
10秒前
郝好完成签到 ,获得积分10
11秒前
12秒前
ShowMaker应助Guinerve采纳,获得30
12秒前
14秒前
15秒前
15秒前
泡泡完成签到 ,获得积分10
19秒前
科目三应助颜沛文采纳,获得10
20秒前
FashionBoy应助稿子哥采纳,获得10
22秒前
23秒前
yyan发布了新的文献求助10
26秒前
26秒前
JinZ发布了新的文献求助10
27秒前
祝一刀发布了新的文献求助10
27秒前
科研通AI2S应助白小黑采纳,获得10
28秒前
白张发布了新的文献求助10
29秒前
hhc发布了新的文献求助10
29秒前
颜沛文发布了新的文献求助10
31秒前
32秒前
32秒前
36秒前
互助遵法尚德应助jiangci采纳,获得10
36秒前
略略略发布了新的文献求助10
36秒前
37秒前
mysyne发布了新的文献求助10
41秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146409
求助须知:如何正确求助?哪些是违规求助? 2797811
关于积分的说明 7825638
捐赠科研通 2454147
什么是DOI,文献DOI怎么找? 1306157
科研通“疑难数据库(出版商)”最低求助积分说明 627642
版权声明 601503