Copper-triggered delocalization of bismuth p-orbital favours high-throughput CO2 electroreduction

催化作用 离域电子 材料科学 电化学 氧化还原 催化循环 纳米技术 化学 电极 组合化学 化学物理 无机化学 物理化学 有机化学 冶金
作者
Bowen Liu,Ying Xie,Xiaolei Wang,Chang Gao,Zhimin Chen,Jun Wu,Huiyuan Meng,Zichen Song,Shichao Du,Zhiyu Ren
出处
期刊:Applied Catalysis B-environmental [Elsevier]
卷期号:301: 120781-120781 被引量:51
标识
DOI:10.1016/j.apcatb.2021.120781
摘要

At present, formic acid with the high energy value is the promising product generated by the large-scale renewable electricity-driven CO2 conversion, yet challenges remain in the high-throughput and low-energy production accompanied by the considerable selectivity. Herein, in view of the contribution of electronic modulation to electrocatalytic CO2 reduction reaction (CO2RR) activity of catalysts, the thin BiCu-bimetallic film was designed and built on Cu foam (BiCu/CF) by coupling a facile hydrothermal reaction and an immediate electrochemical transformation. The theoretical evidences demonstrate that Bi p-orbital delocalization triggered by the close-contact metal Cu optimizes reaction pathway of CO2RR, and also favours the orbital hybridization between Bi atom and *OCHO intermediate to form more anti-bonding orbitals, resulting in stabilizing *OCHO intermediate and lowering the thermodynamic barrier of CO2RR. Meanwhile, the electron transferred from catalyst-sites to reaction species also accelerates during CO2RR. Integrating the improved intrinsic activity of Bi catalytic-sites and the superiority of Cu foam in exposing more active sites and the mechanical strength, the BiCu/CF electrode with optimal thickness can acquire satisfactory indicators for industrial application, yielding a record formate current density of 856 mA cm−2, higher than 85% Faradic efficiency, along with a remarkable stability, which outperforms state-of-the-art Bi-based catalysts. This study offers potential avenues of engineering orbital delocalization to rationally construct advanced CO2RR electrodes for the carbon-neutral cycle and utilization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助科研通管家采纳,获得10
2秒前
Chaha应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
2秒前
zhonglv7应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
Owen应助科研通管家采纳,获得10
3秒前
zhonglv7应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
纯真忆安发布了新的文献求助10
5秒前
6秒前
有点儿微胖完成签到,获得积分10
7秒前
细心天德完成签到,获得积分10
7秒前
7秒前
开放幻丝发布了新的文献求助10
7秒前
ntrip完成签到,获得积分10
8秒前
9秒前
传奇3应助ldgsd采纳,获得10
9秒前
橙酒发布了新的文献求助10
10秒前
普外科老白完成签到,获得积分10
13秒前
欣慰立轩发布了新的文献求助10
13秒前
浮游应助彤彤采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304775
求助须知:如何正确求助?哪些是违规求助? 4451039
关于积分的说明 13850712
捐赠科研通 4338311
什么是DOI,文献DOI怎么找? 2381834
邀请新用户注册赠送积分活动 1376922
关于科研通互助平台的介绍 1344282