Wide bandgap (WBG) semiconductor materials have the capability of making power electronic components with a smaller size, faster switching speed, more reliability, and greater efficiency than their silicon-based counterparts. Real progress in the field of power electronics occurred when WBG devices came into use. Reportedly, among the various WBG semiconductors, gallium nitride (GaN) and silicon carbide (4 H-SiC) are perceived for the future of power electronics as excellent materials. The purpose of this chapter is to analyze some recent progress in WBG semiconductor power devices (e.g. diodes, MOSFETs, HEMTs, etc.). The emphasis is made on particularly important issues, such as SiC MOSFETs channel mobility, ohmic contacts in SiC devices, and the strategies for normally-off GaN HEMTs. An outline of the key challenges and a brief insight into the upcoming aspects of ultra-high-voltage SiC devices and GaN vertical devices has been provided in the end.