化学
增溶
膜蛋白
膜
色谱法
蛋白质纯化
生物化学
作者
Anindita Das,Arpan Bysack,H. Raghuraman
标识
DOI:10.1016/j.bbrc.2021.09.031
摘要
Membrane solubilization by detergents is a critical step for successful membrane protein purification. Alkyl maltoside detergents such as DDM and DM are very expensive and are commonly used to produce most of the high-quality proteins in stable and functional form. Recently, dual-detergent strategy using inexpensive detergents for membrane solubilization step has been shown to be highly effective in purifying different classes of membrane proteins in a cost-effective manner. In this work, we have monitored the effectiveness of 'dual-detergent strategy' towards successful purification of the isolated voltage sensing domain (VSD) of KvAP and the inward rectifying K+ channel, KirBac1.1. We demonstrate that the inexpensive detergent Triton X-100 extracts the activated conformation of the KvAP-VSD well without compromising the structural integrity of the sensor, and also retains its proper structural dynamics. Importantly, the cost associated with solubilizing the KvAP sensor can be reduced by ∼2000 fold. To the best of our knowledge, our results constitute the first report characterizing the purification of KvAP voltage sensor using an inexpensive detergent. However, the dual-detergent strategy using Triton X-100 for membrane solubilization is not effective for the purification of inward rectifying K+ channel, KirBac1.1 even in presence of high salt concentration during solubilization. We propose that the dual-detergent strategy will be useful for extracting stable and functional proteins that are both DDM- and DM-extractable, but will be ineffective if the protein is only DM-extractable. The relevance of the effectiveness of dual-detergent strategy with respect to the hydrophobic thickness of proteins is discussed.
科研通智能强力驱动
Strongly Powered by AbleSci AI