方位(导航)
断层(地质)
光谱图
计算机科学
信号(编程语言)
卷积神经网络
小波变换
声音(地理)
小波
语音识别
声学
模式识别(心理学)
人工智能
地质学
地震学
程序设计语言
物理
作者
Dong Li,Binbin Li,Chaoqun Wang,Pengyu Cheng,Bin Jiao
出处
期刊:Journal of physics
[IOP Publishing]
日期:2021-09-01
卷期号:2010 (1): 012159-012159
被引量:2
标识
DOI:10.1088/1742-6596/2010/1/012159
摘要
Abstract As an important part of mechanical equipment, the motor bearing damage rate is very high. In order to realize the fast and accurate diagnosis of motor bearing faults, this paper designs a fault diagnosis equipment based on sound signals. First, perform wavelet transform on the collected sound signal, then use the spectrogram generated by the fast Fourier transform to preliminarily determine whether the motor bearing is faulty, and finally use the convolutional neural network model that has been imported into the processor to diagnose the faulty parts of the motor bearing, The accuracy rate is above 98.41%.
科研通智能强力驱动
Strongly Powered by AbleSci AI