表面完整性
可加工性
机械加工
高温合金
材料科学
表面粗糙度
磨料
表面光洁度
刀具磨损
冶金
机械工程
微观结构
复合材料
工程类
作者
Murat Sarıkaya,Munish Kumar Gupta,Ítalo Tomaz,Danil Yurievich Pimenov,Mustafa Kuntoğlu,Navneet Khanna,Çağrı Vakkas Yıldırım,Grzegorz Królczyk
标识
DOI:10.1016/j.cirpj.2021.08.005
摘要
Today, superalloys (also known as hard-to-cut materials) such as nickel, titanium and cobalt based cover a wide range of areas in engineering applications. At the same time, challenging material properties namely high strength and low thermal conductivity cause low quality in terms of cutting tool life and surface integrity of the machined part. It is important to improve the machinability of this type of materials by applying various methods in the perspective of sustainability. Therefore, current study presents surface integrity, tool wear characteristics and initiatives to improve them during the machining of superalloys. In this manner, it is outlined the surface integrity characteristics containing surface defects, surface roughness, microstructure alterations and mechanical properties. Also, tool wear mechanisms for example abrasive, adhesive, oxidation, diffusion and plastic deformation are investigated in the light of literature review. Finally, possible improvement options for tool wear and surface integrity depend on machining parameters, tool modifications, cooling methods and trade-off strategies are highlighted. The paper can be a guide for the researchers and manufacturers in the area of sustainable machining of hard-to-cut materials as explaining the latest trends and requirements.
科研通智能强力驱动
Strongly Powered by AbleSci AI