Micromechanical mapping of the intact ovary interior reveals contrasting mechanical roles for follicles and stroma

卵巢 毛囊 多囊卵巢 基质 生物 排卵 离体 卵泡 解剖 材料科学 内分泌学 体内 激素 糖尿病 免疫学 生物技术 免疫组织化学 胰岛素抵抗
作者
Thomas I. R. Hopkins,Victoria Bemmer,Stephen Franks,Carina Dunlop,Kate Hardy,Iain E. Dunlop
出处
期刊:Biomaterials [Elsevier]
卷期号:277: 121099-121099 被引量:14
标识
DOI:10.1016/j.biomaterials.2021.121099
摘要

Follicle development in the ovary must be tightly regulated to ensure cyclical release of oocytes (ovulation). Disruption of this process is a common cause of infertility, for example via polycystic ovary syndrome (PCOS) and premature ovarian insufficiency (POI). Recent ex vivo studies suggest that follicle growth is mechanically regulated, however, crucially, the actual mechanical properties of the follicle microenvironment have remained unknown. Here we use atomic force microscopy (AFM) spherical probe indentation to map and quantify the mechanical microenvironment in the mouse ovary, at high resolution and across the entire width of the intact (bisected) ovarian interior. Averaging over the entire organ, we find the ovary to be a fairly soft tissue comparable to fat or kidney (mean Young's Modulus 3.3±2.5 kPa). This average, however, conceals substantial spatial variations, with the overall range of tissue stiffnesses from c. 0.5-10 kPa, challenging the concept that a single Young's Modulus can effectively summarize this complex organ. Considering the internal architecture of the ovary, we find that stiffness is low at the edge and centre which are dominated by stromal tissue, and highest in an intermediate zone that is dominated by large developmentally-advanced follicles, confirmed by comparison with immunohistology images. These results suggest that large follicles are mechanically dominant structures in the ovary, contrasting with previous expectations that collagen-rich stroma would dominate. Extending our study to the highest resolutions (c. 5 μm) showed substantial mechanical variations within the larger zones, even over very short (sub-100 μm) lengths, and especially within the stiffer regions of the ovary. Taken together, our results provide a new, physiologically accurate, framework for ovarian biomechanics and follicle tissue engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
destiny完成签到 ,获得积分10
刚刚
2秒前
zeroayanami0完成签到,获得积分10
3秒前
Huiiiii完成签到,获得积分10
6秒前
YANG发布了新的文献求助10
7秒前
水煮蛋完成签到,获得积分10
7秒前
yang完成签到,获得积分10
7秒前
沉静哲瀚完成签到,获得积分20
8秒前
9秒前
小丫头大傻妞完成签到 ,获得积分10
10秒前
李大壮完成签到 ,获得积分10
11秒前
大个应助沉静哲瀚采纳,获得10
14秒前
文献猪发布了新的文献求助10
14秒前
14秒前
星辰大海应助wang采纳,获得10
15秒前
柒月完成签到 ,获得积分10
16秒前
乐乐应助xxs采纳,获得10
16秒前
迅速泽洋完成签到,获得积分10
18秒前
李健应助稳重的若雁采纳,获得10
18秒前
2420574910发布了新的文献求助10
19秒前
20秒前
上善若水呦完成签到 ,获得积分10
23秒前
23秒前
麦子发布了新的文献求助10
24秒前
海绵宝宝前列腺儿完成签到,获得积分10
24秒前
朴素的地瓜完成签到,获得积分10
24秒前
木刻青、完成签到,获得积分10
24秒前
24秒前
动听心锁完成签到 ,获得积分10
24秒前
猫咪也疯狂应助你好采纳,获得10
25秒前
大意的糜发布了新的文献求助10
26秒前
zhen发布了新的文献求助10
27秒前
田様应助ZCL采纳,获得10
27秒前
Yxqoehtoso关注了科研通微信公众号
28秒前
29秒前
无花果应助多喝水我采纳,获得10
29秒前
流沙无言完成签到 ,获得积分10
30秒前
薯条爱吃薯条完成签到 ,获得积分10
30秒前
32秒前
lhh发布了新的文献求助10
32秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165059
求助须知:如何正确求助?哪些是违规求助? 2816125
关于积分的说明 7911486
捐赠科研通 2475817
什么是DOI,文献DOI怎么找? 1318378
科研通“疑难数据库(出版商)”最低求助积分说明 632116
版权声明 602370