Hybrid Variation-Aware Network for Angle-Closure Assessment in AS-OCT

房角镜 人工智能 IRIS(生物传感器) 计算机科学 青光眼 计算机视觉 模式识别(心理学) 光学(聚焦) 光学 眼科 医学 物理 生物识别
作者
Jinkui Hao,Fei Li,Huaying Hao,Huazhu Fu,Yanwu Xu,Risa Higashita,Xiulan Zhang,Jiang Liu,Yitian Zhao
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (2): 254-265 被引量:16
标识
DOI:10.1109/tmi.2021.3110602
摘要

Automatic angle-closure assessment in Anterior Segment OCT (AS-OCT) images is an important task for the screening and diagnosis of glaucoma, and the most recent computer-aided models focus on a binary classification of anterior chamber angles (ACA) in AS-OCT, i.e., open-angle and angle-closure. In order to assist clinicians who seek better to understand the development of the spectrum of glaucoma types, a more discriminating three-class classification scheme was suggested, i.e., the classification of ACA was expended to include open-, appositional- and synechial angles. However, appositional and synechial angles display similar appearances in an AS-OCT image, which makes classification models struggle to differentiate angle-closure subtypes based on static AS-OCT images. In order to tackle this issue, we propose a 2D-3D Hybrid Variation-aware Network (HV-Net) for open-appositional-synechial ACA classification from AS-OCT imagery. Specifically, taking into account clinical priors, we first reconstruct the 3D iris surface from an AS-OCT sequence, and obtain the geometrical characteristics necessary to provide global shape information. 2D AS-OCT slices and 3D iris representations are then fed into our HV-Net to extract cross-sectional appearance features and iris morphological features, respectively. To achieve similar results to those of dynamic gonioscopy examination, which is the current gold standard for diagnostic angle assessment, the paired AS-OCT images acquired in dark and light illumination conditions are used to obtain an accurate characterization of configurational changes in ACAs and iris shapes, using a Variation-aware Block. In addition, an annealing loss function was introduced to optimize our model, so as to encourage the sub-networks to map the inputs into the more conducive spaces to extract dark-to-light variation representations, while retaining the discriminative power of the learned features. The proposed model is evaluated across 1584 paired AS-OCT samples, and it has demonstrated its superiority in classifying open-, appositional- and synechial angles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sonic发布了新的文献求助20
刚刚
SciGPT应助PPPhua采纳,获得10
1秒前
winna完成签到,获得积分10
1秒前
顾矜应助ling采纳,获得10
2秒前
tututu完成签到,获得积分20
3秒前
传奇3应助小小橙采纳,获得10
4秒前
pcr163应助以筱采纳,获得100
4秒前
慕青应助Ruby采纳,获得10
4秒前
丘比特应助霏166采纳,获得10
5秒前
orixero应助学术悍匪采纳,获得10
6秒前
善学以致用应助yu采纳,获得10
6秒前
爆米花应助黄婷采纳,获得10
6秒前
bosco完成签到,获得积分10
9秒前
10秒前
gloooow完成签到 ,获得积分10
10秒前
三十完成签到,获得积分20
12秒前
12秒前
13秒前
14秒前
hhw发布了新的文献求助10
14秒前
研友_VZG7GZ应助星空采纳,获得10
15秒前
15秒前
15秒前
16秒前
16秒前
达鸟啊完成签到,获得积分10
16秒前
16秒前
三十发布了新的文献求助10
17秒前
斯文败类应助dabai采纳,获得10
17秒前
小火苗发布了新的文献求助10
18秒前
小小橙发布了新的文献求助10
18秒前
20秒前
澡雪发布了新的文献求助10
20秒前
伶俐绮发布了新的文献求助10
20秒前
安详的自中完成签到,获得积分10
21秒前
shuiliuyuzai完成签到,获得积分10
21秒前
仿生人发布了新的文献求助10
22秒前
22秒前
Sunrising发布了新的文献求助10
23秒前
田様应助淡然的小萱采纳,获得10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976058
求助须知:如何正确求助?哪些是违规求助? 3520294
关于积分的说明 11202245
捐赠科研通 3256804
什么是DOI,文献DOI怎么找? 1798471
邀请新用户注册赠送积分活动 877610
科研通“疑难数据库(出版商)”最低求助积分说明 806496