Hybrid Variation-Aware Network for Angle-Closure Assessment in AS-OCT

房角镜 人工智能 IRIS(生物传感器) 计算机科学 青光眼 计算机视觉 模式识别(心理学) 光学(聚焦) 光学 眼科 医学 物理 生物识别
作者
Jinkui Hao,Fei Li,Huaying Hao,Huazhu Fu,Yanwu Xu,Risa Higashita,Xiulan Zhang,Jiang Liu,Yitian Zhao
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (2): 254-265 被引量:16
标识
DOI:10.1109/tmi.2021.3110602
摘要

Automatic angle-closure assessment in Anterior Segment OCT (AS-OCT) images is an important task for the screening and diagnosis of glaucoma, and the most recent computer-aided models focus on a binary classification of anterior chamber angles (ACA) in AS-OCT, i.e., open-angle and angle-closure. In order to assist clinicians who seek better to understand the development of the spectrum of glaucoma types, a more discriminating three-class classification scheme was suggested, i.e., the classification of ACA was expended to include open-, appositional- and synechial angles. However, appositional and synechial angles display similar appearances in an AS-OCT image, which makes classification models struggle to differentiate angle-closure subtypes based on static AS-OCT images. In order to tackle this issue, we propose a 2D-3D Hybrid Variation-aware Network (HV-Net) for open-appositional-synechial ACA classification from AS-OCT imagery. Specifically, taking into account clinical priors, we first reconstruct the 3D iris surface from an AS-OCT sequence, and obtain the geometrical characteristics necessary to provide global shape information. 2D AS-OCT slices and 3D iris representations are then fed into our HV-Net to extract cross-sectional appearance features and iris morphological features, respectively. To achieve similar results to those of dynamic gonioscopy examination, which is the current gold standard for diagnostic angle assessment, the paired AS-OCT images acquired in dark and light illumination conditions are used to obtain an accurate characterization of configurational changes in ACAs and iris shapes, using a Variation-aware Block. In addition, an annealing loss function was introduced to optimize our model, so as to encourage the sub-networks to map the inputs into the more conducive spaces to extract dark-to-light variation representations, while retaining the discriminative power of the learned features. The proposed model is evaluated across 1584 paired AS-OCT samples, and it has demonstrated its superiority in classifying open-, appositional- and synechial angles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JW发布了新的文献求助10
1秒前
无限的千凝完成签到 ,获得积分10
2秒前
CipherSage应助YeeYee采纳,获得10
2秒前
2秒前
Ander完成签到 ,获得积分10
3秒前
化白完成签到,获得积分10
4秒前
H.完成签到,获得积分10
4秒前
chuzihang完成签到 ,获得积分10
4秒前
科研小狗完成签到,获得积分10
10秒前
11完成签到,获得积分10
11秒前
柏林寒冬应助QAQ采纳,获得10
13秒前
Flynn完成签到 ,获得积分10
15秒前
16秒前
16秒前
BZPL完成签到,获得积分10
17秒前
LANER完成签到 ,获得积分10
17秒前
17秒前
ww完成签到 ,获得积分10
17秒前
拉布拉多多不多完成签到,获得积分10
18秒前
多肉丸子完成签到,获得积分10
19秒前
yian完成签到,获得积分10
19秒前
HJJHJH发布了新的文献求助30
20秒前
正直无极完成签到,获得积分10
20秒前
认真的一刀完成签到,获得积分10
20秒前
杨天天完成签到,获得积分0
20秒前
yukiseto发布了新的文献求助30
21秒前
小熊爱吃糖完成签到,获得积分10
22秒前
李振博发布了新的文献求助200
23秒前
realityjunky完成签到,获得积分10
23秒前
peekaboo完成签到,获得积分10
23秒前
高贵的迎蕾完成签到 ,获得积分10
25秒前
wqc2060完成签到,获得积分10
25秒前
曾经小伙完成签到 ,获得积分10
25秒前
赘婿应助realityjunky采纳,获得10
28秒前
温柔的蛋挞完成签到,获得积分10
28秒前
whuhustwit完成签到,获得积分10
29秒前
29秒前
黄74185296完成签到,获得积分10
29秒前
Coral完成签到,获得积分10
29秒前
结实山水完成签到 ,获得积分10
30秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038303
求助须知:如何正确求助?哪些是违规求助? 3576013
关于积分的说明 11374210
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029