Machine-learning algorithm to predict multidisciplinary team treatment recommendations in the management of basal cell carcinoma

皮肤癌 背景(考古学) 放射治疗 鼻子 医学 审计 莫氏手术 机器学习 放射科 外科 基底细胞癌 算法 计算机科学 癌症 医学物理学 病理 基底细胞 内科学 管理 经济 古生物学 生物
作者
Tom W. Andrew,Nathan Hamnett,Iain Roy,J. Garioch,Jenny Nobes,Marc Moncrieff
出处
期刊:British Journal of Cancer [Springer Nature]
卷期号:126 (4): 562-568 被引量:19
标识
DOI:10.1038/s41416-021-01506-7
摘要

Basal cell carcinoma (BCC) is the most common human cancer. Facial BCCs most commonly occur on the nose and the management of these lesions is particularly complex, given the functional and complex implications of treatment. Multidisciplinary team (MDT) meetings are routinely held to integrate expertise from dermatologists, surgeons, oncologists, radiologists, pathologists and allied health professionals. The aim of this research was to develop a supervised machine-learning algorithm to predict MDT recommendations for nasal BCC to potentially reduce MDT caseload, provide automatic decision support and permit data audit in a health service context. The study population included all consecutive patients who were discussed at skin cancer-specialised MDT (SSMDT) with a diagnosis of nasal BCC between January 1, 2015 and December 31, 2015. We conducted analyses for gender, age, anatomical location, histological subtype, tumour size, tumour recurrence, anticoagulation, pacemaker, immunosuppressants and therapeutic modalities (Mohs surgery, conventional excision or radiotherapy). We used S-statistic computing language to develop a supervised machine-learning algorithm. We found that 37.5% of patients could be reliably predicted to be triaged to Mohs micrographic surgery (MMS), based on tumour location and age. Similarly, the choice of conventional treatment (surgical excision or radiotherapy) by the MDT could be reliably predicted based on the patient’s age, tumour phenotype and lesion size. Accordingly, the algorithm reliably predicted the MDT decision outcome of 45.1% of nasal BCCs. Our study suggests that the machine-learning approach is a potentially useful tool for predicting MDT decisions for MMS vs conventional surgery or radiotherapy for a significant group of patients. We suggest that utilising this algorithm gives the MDT more time to consider more complex patients, where multiple factors, including recurrence, financial costs and cosmetic outcome, contribute to the final decision, but cannot be reliably predicted to determine that outcome. This approach has the potential to reduce the burden and improve the efficiency of the specialist skin MDT and, in turn, improve patient care, reduce waiting times and reduce the financial burden. Such an algorithm would need to be updated regularly to take into account any changes in patient referral patterns, treatment options or local clinical expertise. lPLAS_20-21_A08.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
阜睿完成签到 ,获得积分10
1秒前
1秒前
4秒前
6秒前
enchanted发布了新的文献求助100
6秒前
雪山飞鹰发布了新的文献求助10
6秒前
小胜完成签到 ,获得积分10
6秒前
正义狗狗侠完成签到,获得积分10
6秒前
打打应助可爱千兰采纳,获得10
10秒前
HRIFFIN发布了新的文献求助10
11秒前
woollen2022完成签到,获得积分10
11秒前
15秒前
15秒前
18秒前
手可摘星辰完成签到,获得积分10
18秒前
英姑应助sy6666采纳,获得10
20秒前
20秒前
思源应助雪山飞鹰采纳,获得10
21秒前
Akim应助大椋采纳,获得10
22秒前
蝈蝈完成签到,获得积分10
22秒前
xr发布了新的文献求助10
23秒前
可爱千兰发布了新的文献求助10
24秒前
桐桐应助小小怪兽采纳,获得10
25秒前
北风发布了新的文献求助30
28秒前
卡卡完成签到,获得积分10
30秒前
55555发布了新的文献求助10
31秒前
whole完成签到 ,获得积分10
31秒前
充电宝应助congcong采纳,获得10
35秒前
婷婷完成签到,获得积分10
37秒前
39秒前
天天快乐应助北风采纳,获得10
39秒前
39秒前
乐乐应助走四方采纳,获得10
39秒前
爆米花应助猕猴桃采纳,获得10
39秒前
40秒前
40秒前
su完成签到 ,获得积分10
41秒前
缥缈的越泽完成签到,获得积分10
42秒前
43秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307081
求助须知:如何正确求助?哪些是违规求助? 2940878
关于积分的说明 8499176
捐赠科研通 2615063
什么是DOI,文献DOI怎么找? 1428599
科研通“疑难数据库(出版商)”最低求助积分说明 663482
邀请新用户注册赠送积分活动 648318