Machine-learning algorithm to predict multidisciplinary team treatment recommendations in the management of basal cell carcinoma

皮肤癌 背景(考古学) 放射治疗 鼻子 医学 审计 莫氏手术 机器学习 放射科 外科 基底细胞癌 算法 计算机科学 癌症 医学物理学 病理 基底细胞 内科学 管理 经济 古生物学 生物
作者
Tom W. Andrew,Nathan Hamnett,Iain Roy,J. Garioch,Jenny Nobes,Marc Moncrieff
出处
期刊:British Journal of Cancer [Springer Nature]
卷期号:126 (4): 562-568 被引量:19
标识
DOI:10.1038/s41416-021-01506-7
摘要

Basal cell carcinoma (BCC) is the most common human cancer. Facial BCCs most commonly occur on the nose and the management of these lesions is particularly complex, given the functional and complex implications of treatment. Multidisciplinary team (MDT) meetings are routinely held to integrate expertise from dermatologists, surgeons, oncologists, radiologists, pathologists and allied health professionals. The aim of this research was to develop a supervised machine-learning algorithm to predict MDT recommendations for nasal BCC to potentially reduce MDT caseload, provide automatic decision support and permit data audit in a health service context. The study population included all consecutive patients who were discussed at skin cancer-specialised MDT (SSMDT) with a diagnosis of nasal BCC between January 1, 2015 and December 31, 2015. We conducted analyses for gender, age, anatomical location, histological subtype, tumour size, tumour recurrence, anticoagulation, pacemaker, immunosuppressants and therapeutic modalities (Mohs surgery, conventional excision or radiotherapy). We used S-statistic computing language to develop a supervised machine-learning algorithm. We found that 37.5% of patients could be reliably predicted to be triaged to Mohs micrographic surgery (MMS), based on tumour location and age. Similarly, the choice of conventional treatment (surgical excision or radiotherapy) by the MDT could be reliably predicted based on the patient’s age, tumour phenotype and lesion size. Accordingly, the algorithm reliably predicted the MDT decision outcome of 45.1% of nasal BCCs. Our study suggests that the machine-learning approach is a potentially useful tool for predicting MDT decisions for MMS vs conventional surgery or radiotherapy for a significant group of patients. We suggest that utilising this algorithm gives the MDT more time to consider more complex patients, where multiple factors, including recurrence, financial costs and cosmetic outcome, contribute to the final decision, but cannot be reliably predicted to determine that outcome. This approach has the potential to reduce the burden and improve the efficiency of the specialist skin MDT and, in turn, improve patient care, reduce waiting times and reduce the financial burden. Such an algorithm would need to be updated regularly to take into account any changes in patient referral patterns, treatment options or local clinical expertise. lPLAS_20-21_A08.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JangYW完成签到,获得积分10
刚刚
回家放羊完成签到 ,获得积分10
刚刚
JoshuaChen发布了新的文献求助20
刚刚
tianhualefei完成签到,获得积分10
1秒前
可爱的香菇完成签到 ,获得积分10
1秒前
1秒前
毛子涵完成签到,获得积分10
1秒前
墨旱莲完成签到,获得积分10
1秒前
zzzqqq完成签到,获得积分10
1秒前
2秒前
懦弱的难敌完成签到,获得积分10
2秒前
布鲁斯盖完成签到,获得积分10
2秒前
SILENCE发布了新的文献求助10
2秒前
科研通AI2S应助Du采纳,获得10
2秒前
3秒前
3秒前
3秒前
我是老大应助李霞采纳,获得10
3秒前
277发布了新的文献求助20
3秒前
sherlym发布了新的文献求助10
4秒前
殷蝶完成签到,获得积分20
5秒前
稳重的如容完成签到,获得积分10
6秒前
少年完成签到,获得积分0
6秒前
慕青应助飘逸鸵鸟采纳,获得10
7秒前
7秒前
幽默的百川完成签到,获得积分10
7秒前
薛亚妮发布了新的文献求助10
8秒前
温言叮叮铛完成签到,获得积分10
8秒前
dong应助Pumpkin采纳,获得20
9秒前
穆萝完成签到,获得积分0
9秒前
完美世界应助yls采纳,获得10
10秒前
10秒前
10秒前
madmax完成签到,获得积分10
10秒前
10秒前
11秒前
bkagyin应助激昂的背包采纳,获得10
11秒前
木之木完成签到,获得积分0
11秒前
12秒前
CY完成签到,获得积分10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582