A Machine Learning Approach for Gas Price Prediction in Ethereum Blockchain

块链 计算机科学 数据库事务 甲骨文公司 数字加密货币 块(置换群论) 订单(交换) 智能合约 数据挖掘 机器学习 人工智能 数据库 计算机安全 财务 经济 数学 几何学 软件工程
作者
Rawya Mars,Amal Abid,Saoussen Cheikhrouhou,Slim Kallel
标识
DOI:10.1109/compsac51774.2021.00033
摘要

Ethereum is a blockchain-based platform that pro-vides a global computational infrastructure to run smart contracts. In order to assign a cost to smart contract and transaction execution, the Ethereum Blockchain adopts a gas-based metering approach which is designed to motivate miners to operate the network and protect it against attacks. More precisely, miners receive fees from all transactions included in the mined block in addition to the mining reward. Hence, the higher the gas price in the transactions, the higher the fee paid to the miner will be, resulting in faster selection and execution of higher priced gas transactions. Therefore, an Ethereum transaction sender is exposed to the non-trivial task of having to choose an optimal gas price, as underpaying likely results in a transaction not being picked by miners, whereas overpaying leads to superfluous costs. This paper provides recommendation approach that proposes an appropriate gas price to users. More precisely, it investigates different approaches of forecasting algorithms applied for gas price predictions for the next block in Ethereum Blockchain. The gas price is predicted using the Prophet model and the deep learning models, Long-Short Term Memory (LSTM) and Gated Recurrent Unit (GRU). It also aims to compare these approaches with the most used gas price oracles. An evaluation of the obtained results show that the LSTM and GRU proposed models outperform Prophet model as well as the gas price oracle Geth. In this case, LSTM and GRU provide a low mean squared error (MSE) of 0,008 whereas Geth gives an MSE of 0.016 and Prophet gives an MSE of 0.014.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dpp发布了新的文献求助10
刚刚
今今完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
2秒前
打打应助无情的白桃采纳,获得10
2秒前
香蕉觅云应助与光同晨采纳,获得10
3秒前
3秒前
小蘑菇应助clm采纳,获得10
3秒前
yhnsag完成签到,获得积分10
3秒前
Lin完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
5秒前
Rain发布了新的文献求助10
5秒前
butiflow完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
务实的唇膏完成签到,获得积分10
6秒前
Will完成签到,获得积分10
6秒前
6秒前
Micky完成签到,获得积分10
6秒前
ape发布了新的文献求助10
6秒前
十七发布了新的文献求助10
7秒前
gyt发布了新的文献求助10
7秒前
时尚战斗机完成签到,获得积分10
7秒前
7秒前
华安发布了新的文献求助30
8秒前
8秒前
迟大猫应助dpp采纳,获得10
8秒前
9秒前
astral完成签到,获得积分10
9秒前
科研通AI5应助HJJHJH采纳,获得30
10秒前
Isabel发布了新的文献求助10
10秒前
10秒前
桑姊发布了新的文献求助10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762