A Machine Learning Approach for Gas Price Prediction in Ethereum Blockchain

块链 计算机科学 数据库事务 甲骨文公司 数字加密货币 块(置换群论) 订单(交换) 智能合约 数据挖掘 机器学习 人工智能 数据库 计算机安全 财务 经济 数学 几何学 软件工程
作者
Rawya Mars,Amal Abid,Saoussen Cheikhrouhou,Slim Kallel
标识
DOI:10.1109/compsac51774.2021.00033
摘要

Ethereum is a blockchain-based platform that pro-vides a global computational infrastructure to run smart contracts. In order to assign a cost to smart contract and transaction execution, the Ethereum Blockchain adopts a gas-based metering approach which is designed to motivate miners to operate the network and protect it against attacks. More precisely, miners receive fees from all transactions included in the mined block in addition to the mining reward. Hence, the higher the gas price in the transactions, the higher the fee paid to the miner will be, resulting in faster selection and execution of higher priced gas transactions. Therefore, an Ethereum transaction sender is exposed to the non-trivial task of having to choose an optimal gas price, as underpaying likely results in a transaction not being picked by miners, whereas overpaying leads to superfluous costs. This paper provides recommendation approach that proposes an appropriate gas price to users. More precisely, it investigates different approaches of forecasting algorithms applied for gas price predictions for the next block in Ethereum Blockchain. The gas price is predicted using the Prophet model and the deep learning models, Long-Short Term Memory (LSTM) and Gated Recurrent Unit (GRU). It also aims to compare these approaches with the most used gas price oracles. An evaluation of the obtained results show that the LSTM and GRU proposed models outperform Prophet model as well as the gas price oracle Geth. In this case, LSTM and GRU provide a low mean squared error (MSE) of 0,008 whereas Geth gives an MSE of 0.016 and Prophet gives an MSE of 0.014.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MonicaR完成签到,获得积分10
1秒前
1秒前
粗心的墨镜完成签到,获得积分10
2秒前
2秒前
Maestro_S发布了新的文献求助10
3秒前
wwwq发布了新的文献求助10
3秒前
liuying发布了新的文献求助10
3秒前
XinChenLee发布了新的文献求助10
3秒前
3秒前
ZZ完成签到 ,获得积分10
4秒前
hokin33发布了新的文献求助30
4秒前
jyk完成签到,获得积分10
4秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
一期一会发布了新的文献求助30
7秒前
英俊皮卡丘完成签到,获得积分10
7秒前
NexusExplorer应助芋头采纳,获得10
8秒前
任某人完成签到,获得积分10
9秒前
小叶同学完成签到,获得积分10
9秒前
勇敢的心发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
10秒前
11秒前
11秒前
11秒前
11秒前
Arlene完成签到 ,获得积分10
11秒前
Aryan关注了科研通微信公众号
11秒前
12秒前
12秒前
12秒前
hokin33完成签到,获得积分10
13秒前
小马甲应助菜菜mm采纳,获得10
13秒前
jyk发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
杏杏发布了新的文献求助10
15秒前
笨笨忘幽关注了科研通微信公众号
15秒前
张一一完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785120
求助须知:如何正确求助?哪些是违规求助? 5686059
关于积分的说明 15466834
捐赠科研通 4914228
什么是DOI,文献DOI怎么找? 2645117
邀请新用户注册赠送积分活动 1592946
关于科研通互助平台的介绍 1547300