A Machine Learning Approach for Gas Price Prediction in Ethereum Blockchain

块链 计算机科学 数据库事务 甲骨文公司 数字加密货币 块(置换群论) 订单(交换) 智能合约 数据挖掘 机器学习 人工智能 数据库 计算机安全 财务 经济 数学 几何学 软件工程
作者
Rawya Mars,Amal Abid,Saoussen Cheikhrouhou,Slim Kallel
标识
DOI:10.1109/compsac51774.2021.00033
摘要

Ethereum is a blockchain-based platform that pro-vides a global computational infrastructure to run smart contracts. In order to assign a cost to smart contract and transaction execution, the Ethereum Blockchain adopts a gas-based metering approach which is designed to motivate miners to operate the network and protect it against attacks. More precisely, miners receive fees from all transactions included in the mined block in addition to the mining reward. Hence, the higher the gas price in the transactions, the higher the fee paid to the miner will be, resulting in faster selection and execution of higher priced gas transactions. Therefore, an Ethereum transaction sender is exposed to the non-trivial task of having to choose an optimal gas price, as underpaying likely results in a transaction not being picked by miners, whereas overpaying leads to superfluous costs. This paper provides recommendation approach that proposes an appropriate gas price to users. More precisely, it investigates different approaches of forecasting algorithms applied for gas price predictions for the next block in Ethereum Blockchain. The gas price is predicted using the Prophet model and the deep learning models, Long-Short Term Memory (LSTM) and Gated Recurrent Unit (GRU). It also aims to compare these approaches with the most used gas price oracles. An evaluation of the obtained results show that the LSTM and GRU proposed models outperform Prophet model as well as the gas price oracle Geth. In this case, LSTM and GRU provide a low mean squared error (MSE) of 0,008 whereas Geth gives an MSE of 0.016 and Prophet gives an MSE of 0.014.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优雅的帅哥完成签到 ,获得积分20
刚刚
空白完成签到,获得积分10
1秒前
3秒前
5秒前
5秒前
nulinuli完成签到 ,获得积分10
5秒前
光亮丹琴完成签到,获得积分10
5秒前
5秒前
6秒前
打打应助飞飞采纳,获得10
6秒前
谨慎珊完成签到,获得积分10
7秒前
无奈的代珊完成签到 ,获得积分10
7秒前
晚灯君完成签到 ,获得积分10
7秒前
8秒前
dan发布了新的文献求助30
9秒前
Three完成签到,获得积分10
9秒前
10秒前
云瑾应助revew666采纳,获得30
10秒前
ZZzz完成签到 ,获得积分10
10秒前
11秒前
11秒前
qll完成签到,获得积分10
11秒前
LKIU完成签到 ,获得积分10
11秒前
12秒前
金鱼的眼泪完成签到,获得积分10
12秒前
13秒前
研友_8DoPDZ完成签到,获得积分10
14秒前
共享精神应助袁大头采纳,获得10
14秒前
15秒前
星辰大海应助谨慎珊采纳,获得30
16秒前
qll发布了新的文献求助10
16秒前
小吕完成签到 ,获得积分10
16秒前
curtisness应助furin001采纳,获得10
17秒前
Jasper应助johnzsin采纳,获得10
17秒前
18秒前
CodeCraft应助可靠的寒风采纳,获得10
19秒前
ABC给ABC的求助进行了留言
21秒前
云瑾应助正在采纳,获得10
21秒前
22秒前
醉倒天瓢发布了新的文献求助10
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137214
求助须知:如何正确求助?哪些是违规求助? 2788251
关于积分的说明 7785413
捐赠科研通 2444284
什么是DOI,文献DOI怎么找? 1299869
科研通“疑难数据库(出版商)”最低求助积分说明 625639
版权声明 601023