A Machine Learning Approach for Gas Price Prediction in Ethereum Blockchain

块链 计算机科学 数据库事务 甲骨文公司 数字加密货币 块(置换群论) 订单(交换) 智能合约 数据挖掘 机器学习 人工智能 数据库 计算机安全 财务 经济 数学 几何学 软件工程
作者
Rawya Mars,Amal Abid,Saoussen Cheikhrouhou,Slim Kallel
标识
DOI:10.1109/compsac51774.2021.00033
摘要

Ethereum is a blockchain-based platform that pro-vides a global computational infrastructure to run smart contracts. In order to assign a cost to smart contract and transaction execution, the Ethereum Blockchain adopts a gas-based metering approach which is designed to motivate miners to operate the network and protect it against attacks. More precisely, miners receive fees from all transactions included in the mined block in addition to the mining reward. Hence, the higher the gas price in the transactions, the higher the fee paid to the miner will be, resulting in faster selection and execution of higher priced gas transactions. Therefore, an Ethereum transaction sender is exposed to the non-trivial task of having to choose an optimal gas price, as underpaying likely results in a transaction not being picked by miners, whereas overpaying leads to superfluous costs. This paper provides recommendation approach that proposes an appropriate gas price to users. More precisely, it investigates different approaches of forecasting algorithms applied for gas price predictions for the next block in Ethereum Blockchain. The gas price is predicted using the Prophet model and the deep learning models, Long-Short Term Memory (LSTM) and Gated Recurrent Unit (GRU). It also aims to compare these approaches with the most used gas price oracles. An evaluation of the obtained results show that the LSTM and GRU proposed models outperform Prophet model as well as the gas price oracle Geth. In this case, LSTM and GRU provide a low mean squared error (MSE) of 0,008 whereas Geth gives an MSE of 0.016 and Prophet gives an MSE of 0.014.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
泼泼完成签到,获得积分10
刚刚
1秒前
1秒前
qqiu发布了新的文献求助10
1秒前
星辰大海应助沟通亿心采纳,获得10
1秒前
李健的小迷弟应助zoma采纳,获得10
2秒前
默11发布了新的文献求助10
2秒前
wxl19完成签到,获得积分20
2秒前
2秒前
mmiww完成签到,获得积分10
2秒前
yize发布了新的文献求助10
2秒前
2秒前
小蘑菇应助宋宋采纳,获得10
2秒前
Jinyang发布了新的文献求助10
3秒前
3秒前
博修完成签到,获得积分10
3秒前
jony发布了新的文献求助10
3秒前
3秒前
cicicixixici发布了新的文献求助10
3秒前
予你完成签到,获得积分10
4秒前
bkagyin应助妩媚的问玉采纳,获得10
4秒前
青山有别完成签到,获得积分10
4秒前
Owen应助33采纳,获得50
4秒前
4秒前
李晨阳发布了新的文献求助20
4秒前
4秒前
xyzdmmm完成签到,获得积分10
4秒前
李白完成签到,获得积分10
4秒前
琳琳发布了新的文献求助10
5秒前
情怀应助结实机器猫采纳,获得10
5秒前
17712570999完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
ZeKaWa应助英俊亦巧采纳,获得20
5秒前
张慧仪发布了新的文献求助10
6秒前
陈补天发布了新的文献求助10
6秒前
kkkk完成签到,获得积分10
6秒前
迷路宛筠完成签到 ,获得积分10
7秒前
7秒前
7秒前
华仔应助jony采纳,获得10
8秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619653
求助须知:如何正确求助?哪些是违规求助? 4704273
关于积分的说明 14927050
捐赠科研通 4760246
什么是DOI,文献DOI怎么找? 2550622
邀请新用户注册赠送积分活动 1513424
关于科研通互助平台的介绍 1474450