A Machine Learning Approach for Gas Price Prediction in Ethereum Blockchain

块链 计算机科学 数据库事务 甲骨文公司 数字加密货币 块(置换群论) 订单(交换) 智能合约 数据挖掘 机器学习 人工智能 数据库 计算机安全 财务 经济 数学 几何学 软件工程
作者
Rawya Mars,Amal Abid,Saoussen Cheikhrouhou,Slim Kallel
标识
DOI:10.1109/compsac51774.2021.00033
摘要

Ethereum is a blockchain-based platform that pro-vides a global computational infrastructure to run smart contracts. In order to assign a cost to smart contract and transaction execution, the Ethereum Blockchain adopts a gas-based metering approach which is designed to motivate miners to operate the network and protect it against attacks. More precisely, miners receive fees from all transactions included in the mined block in addition to the mining reward. Hence, the higher the gas price in the transactions, the higher the fee paid to the miner will be, resulting in faster selection and execution of higher priced gas transactions. Therefore, an Ethereum transaction sender is exposed to the non-trivial task of having to choose an optimal gas price, as underpaying likely results in a transaction not being picked by miners, whereas overpaying leads to superfluous costs. This paper provides recommendation approach that proposes an appropriate gas price to users. More precisely, it investigates different approaches of forecasting algorithms applied for gas price predictions for the next block in Ethereum Blockchain. The gas price is predicted using the Prophet model and the deep learning models, Long-Short Term Memory (LSTM) and Gated Recurrent Unit (GRU). It also aims to compare these approaches with the most used gas price oracles. An evaluation of the obtained results show that the LSTM and GRU proposed models outperform Prophet model as well as the gas price oracle Geth. In this case, LSTM and GRU provide a low mean squared error (MSE) of 0,008 whereas Geth gives an MSE of 0.016 and Prophet gives an MSE of 0.014.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
momo发布了新的文献求助10
2秒前
漫山完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
4秒前
5秒前
阿斗发布了新的文献求助10
6秒前
6秒前
踏实的火龙果完成签到 ,获得积分20
6秒前
健忘白完成签到,获得积分10
8秒前
ding应助liang采纳,获得30
9秒前
厉害tt完成签到,获得积分10
9秒前
9秒前
ding应助momo采纳,获得10
9秒前
在水一方应助吧啦吧啦采纳,获得10
9秒前
踏实的火龙果关注了科研通微信公众号
10秒前
维尼发布了新的文献求助20
11秒前
文档发布了新的文献求助10
11秒前
Rondab应助千余采纳,获得10
15秒前
15秒前
taowang发布了新的文献求助30
15秒前
一支笔画天下完成签到 ,获得积分10
15秒前
16秒前
CL完成签到 ,获得积分10
17秒前
hnlgdx完成签到,获得积分20
17秒前
Dotson发布了新的文献求助20
17秒前
出门见喜发布了新的文献求助10
19秒前
丁老三完成签到 ,获得积分10
20秒前
gky完成签到,获得积分10
21秒前
23秒前
嘻哈完成签到,获得积分10
24秒前
火力全开发布了新的文献求助10
25秒前
taowang完成签到,获得积分10
29秒前
地表飞猪应助科研通管家采纳,获得10
29秒前
研友_VZG7GZ应助科研通管家采纳,获得10
29秒前
嘿小黑应助科研通管家采纳,获得30
29秒前
天天快乐应助科研通管家采纳,获得10
29秒前
脑洞疼应助科研通管家采纳,获得10
30秒前
大个应助科研通管家采纳,获得10
30秒前
Akim应助科研通管家采纳,获得10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989297
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253893
捐赠科研通 3270097
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809158