Neural Network Algorithm With Reinforcement Learning for Parameters Extraction of Photovoltaic Models

人工神经网络 强化学习 计算机科学 趋同(经济学) 人工智能 理论(学习稳定性) 光伏系统 机器学习 局部最优 人口 算法 工程类 社会学 人口学 电气工程 经济 经济增长
作者
Yiying Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (6): 2806-2816 被引量:17
标识
DOI:10.1109/tnnls.2021.3109565
摘要

This research focuses on the application of artificial neural networks (ANNs) on parameters extraction of photovoltaic (PV) models. Extracting parameters of the PV models accurately is crucial to control and optimize PV systems. Although many algorithms have been proposed to address this issue, how to extract the parameters of the PV models accurately and reliably is still a great challenge. Neural network algorithm (NNA) is a recently reported metaheuristic algorithm. NNA is inspired by ANNs. Benefiting from the unique structure of ANNs, NNA shows excellent global search ability. However, NNA faces the challenge of slow convergence rate and local optima stagnation in solving complex optimization problems. This article presents an improved NNA, named neural network algorithm with reinforcement learning (RLNNA), for extracting parameters of the PV models. In RLNNA, three strategies, namely modification factor with reinforcement learning (RL), transfer operator with historical population, and feedback operator, are designed to overcome the challenge of NNA. To verify the performance of RLNNA, it is employed to extract the parameters of the three PV models. Experimental results show that RLNNA can extract the parameters of the considered PV models with higher accuracy and stronger stability compared with NNA and the other 12 powerful algorithms, which fully indicates the effectiveness of the improved strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助馒头采纳,获得10
1秒前
阿琳发布了新的文献求助10
2秒前
nancy发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
5秒前
6秒前
香蕉觅云应助YUMI采纳,获得10
6秒前
7秒前
脑洞疼应助cmc采纳,获得10
7秒前
7秒前
8秒前
汉堡包应助冬虫夏草采纳,获得10
8秒前
amtf发布了新的文献求助10
8秒前
王美贤发布了新的文献求助10
8秒前
酷波er应助Palpitate采纳,获得10
8秒前
9秒前
9秒前
qd应助夜王采纳,获得10
9秒前
lijikj完成签到,获得积分20
10秒前
10秒前
哈哈哈哈发布了新的文献求助10
11秒前
Aqua完成签到,获得积分10
12秒前
Russell完成签到 ,获得积分10
12秒前
13秒前
13秒前
mimimi发布了新的文献求助10
13秒前
FashionBoy应助ThoseRangers0624采纳,获得10
13秒前
14秒前
馒头发布了新的文献求助10
15秒前
慕青应助zdesfsfa采纳,获得10
16秒前
嘟嘟嘟完成签到 ,获得积分10
16秒前
16秒前
沸点发布了新的文献求助10
17秒前
17秒前
拼搏妙竹发布了新的文献求助10
17秒前
美满一曲完成签到 ,获得积分10
18秒前
Jason完成签到,获得积分10
18秒前
王美贤完成签到,获得积分20
18秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160420
求助须知:如何正确求助?哪些是违规求助? 2811548
关于积分的说明 7892779
捐赠科研通 2470529
什么是DOI,文献DOI怎么找? 1315616
科研通“疑难数据库(出版商)”最低求助积分说明 630884
版权声明 602042