Natural Language Processing–Driven Model to Extract Contract Change Reasons and Altered Work Items for Advanced Retrieval of Change Orders

计算机科学 自然语言处理 人工智能 分类器(UML) 条件随机场 语义变化 情报检索 代表(政治) 范围(计算机科学) 机器学习 程序设计语言 政治学 政治 法学
作者
Taewoo Ko,H. David Jeong,Ghang Lee
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:147 (11) 被引量:8
标识
DOI:10.1061/(asce)co.1943-7862.0002172
摘要

Change orders are documents that describe a specific contract amendment to the original scope of work. Historical change orders are invaluable information sources that can provide practical and proven solutions for developing new change orders from similar cases. However, current change order management systems are not efficient in searching for and finding the most related and similar change orders due to inherent weaknesses in current archiving and search processes, such as keyword-based or reason code–based search. This study proposes and develops a natural language processing (NLP)–driven model that can significantly improve the accuracy and reliability of searching cases by restructuring how each change order’s information is stored and retrieved in change order management systems. The NLP-driven model proposed in this study can automatically detect change reasons and altered work items through text representation pattern analysis and training. The proposed model applies semantic frames to define essential semantic components and determines syntactic features for text representation pattern analysis. The model also utilizes a conditional random field (CRF) classifier, which can consider contexts in sequential texts at the model training stage. The proposed model can significantly improve the accuracy and relevancy of the search process to find the most similar cases by allowing context-driven classification, archiving, and retrieval of change orders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
阿雷发布了新的文献求助10
1秒前
Forever完成签到,获得积分10
1秒前
ma完成签到,获得积分10
2秒前
2秒前
3秒前
陈雯完成签到 ,获得积分10
4秒前
lina完成签到,获得积分10
4秒前
华仔应助小王子采纳,获得10
5秒前
结实大象发布了新的文献求助10
5秒前
ting发布了新的文献求助10
6秒前
Anoxia发布了新的文献求助10
6秒前
xn201120应助佳佳采纳,获得100
7秒前
7秒前
7秒前
画仲人完成签到 ,获得积分10
8秒前
SHAO应助第八维采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
YamDaamCaa应助科研通管家采纳,获得30
9秒前
YamDaamCaa应助科研通管家采纳,获得30
9秒前
ED应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
ding应助科研通管家采纳,获得10
10秒前
pluto应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
10秒前
SHAO应助jacs111采纳,获得10
10秒前
田様应助科研通管家采纳,获得30
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
大模型应助科研通管家采纳,获得10
10秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979242
求助须知:如何正确求助?哪些是违规求助? 3523187
关于积分的说明 11216570
捐赠科研通 3260615
什么是DOI,文献DOI怎么找? 1800151
邀请新用户注册赠送积分活动 878854
科研通“疑难数据库(出版商)”最低求助积分说明 807099