Natural Language Processing–Driven Model to Extract Contract Change Reasons and Altered Work Items for Advanced Retrieval of Change Orders

计算机科学 自然语言处理 人工智能 分类器(UML) 条件随机场 语义变化 情报检索 代表(政治) 范围(计算机科学) 机器学习 程序设计语言 政治学 政治 法学
作者
Taewoo Ko,H. David Jeong,Ghang Lee
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:147 (11) 被引量:8
标识
DOI:10.1061/(asce)co.1943-7862.0002172
摘要

Change orders are documents that describe a specific contract amendment to the original scope of work. Historical change orders are invaluable information sources that can provide practical and proven solutions for developing new change orders from similar cases. However, current change order management systems are not efficient in searching for and finding the most related and similar change orders due to inherent weaknesses in current archiving and search processes, such as keyword-based or reason code–based search. This study proposes and develops a natural language processing (NLP)–driven model that can significantly improve the accuracy and reliability of searching cases by restructuring how each change order’s information is stored and retrieved in change order management systems. The NLP-driven model proposed in this study can automatically detect change reasons and altered work items through text representation pattern analysis and training. The proposed model applies semantic frames to define essential semantic components and determines syntactic features for text representation pattern analysis. The model also utilizes a conditional random field (CRF) classifier, which can consider contexts in sequential texts at the model training stage. The proposed model can significantly improve the accuracy and relevancy of the search process to find the most similar cases by allowing context-driven classification, archiving, and retrieval of change orders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
dengqin发布了新的文献求助10
1秒前
Andy完成签到,获得积分20
1秒前
2秒前
Singularity应助6666666采纳,获得10
2秒前
orixero应助EliotFang采纳,获得30
2秒前
丘比特应助wjx采纳,获得30
3秒前
我是老大应助wjx采纳,获得10
3秒前
3秒前
脑洞疼应助wjx采纳,获得10
4秒前
852应助wjx采纳,获得10
4秒前
万能图书馆应助wjx采纳,获得10
4秒前
小马甲应助wjx采纳,获得30
4秒前
丘比特应助wjx采纳,获得10
4秒前
Jasper应助wjx采纳,获得10
4秒前
善学以致用应助wjx采纳,获得10
4秒前
大个应助wjx采纳,获得10
4秒前
bushuiniao完成签到,获得积分20
4秒前
5秒前
5秒前
耿耿发布了新的文献求助10
6秒前
6秒前
noobmaster完成签到,获得积分10
6秒前
辛勤靖荷发布了新的文献求助10
6秒前
呆萌的映易完成签到,获得积分20
7秒前
josui完成签到,获得积分10
7秒前
dengqin完成签到 ,获得积分10
8秒前
Meggy发布了新的文献求助10
10秒前
10秒前
万能图书馆应助eve采纳,获得10
11秒前
cocolu应助YYYY采纳,获得10
12秒前
丘比特应助张烽采纳,获得10
12秒前
13秒前
思源应助wjx采纳,获得10
13秒前
ding应助wjx采纳,获得30
13秒前
情怀应助wjx采纳,获得10
13秒前
bkagyin应助wjx采纳,获得10
13秒前
天天快乐应助wjx采纳,获得30
13秒前
打打应助wjx采纳,获得10
13秒前
李爱国应助wjx采纳,获得10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304792
求助须知:如何正确求助?哪些是违规求助? 2938738
关于积分的说明 8489795
捐赠科研通 2613236
什么是DOI,文献DOI怎么找? 1427209
科研通“疑难数据库(出版商)”最低求助积分说明 662907
邀请新用户注册赠送积分活动 647557