Natural Language Processing–Driven Model to Extract Contract Change Reasons and Altered Work Items for Advanced Retrieval of Change Orders

计算机科学 自然语言处理 人工智能 分类器(UML) 条件随机场 语义变化 情报检索 代表(政治) 范围(计算机科学) 机器学习 程序设计语言 政治学 政治 法学
作者
Taewoo Ko,H. David Jeong,Ghang Lee
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:147 (11) 被引量:8
标识
DOI:10.1061/(asce)co.1943-7862.0002172
摘要

Change orders are documents that describe a specific contract amendment to the original scope of work. Historical change orders are invaluable information sources that can provide practical and proven solutions for developing new change orders from similar cases. However, current change order management systems are not efficient in searching for and finding the most related and similar change orders due to inherent weaknesses in current archiving and search processes, such as keyword-based or reason code–based search. This study proposes and develops a natural language processing (NLP)–driven model that can significantly improve the accuracy and reliability of searching cases by restructuring how each change order’s information is stored and retrieved in change order management systems. The NLP-driven model proposed in this study can automatically detect change reasons and altered work items through text representation pattern analysis and training. The proposed model applies semantic frames to define essential semantic components and determines syntactic features for text representation pattern analysis. The model also utilizes a conditional random field (CRF) classifier, which can consider contexts in sequential texts at the model training stage. The proposed model can significantly improve the accuracy and relevancy of the search process to find the most similar cases by allowing context-driven classification, archiving, and retrieval of change orders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hll完成签到,获得积分20
刚刚
阳yang发布了新的文献求助10
刚刚
1秒前
wang1090发布了新的文献求助30
2秒前
呜呜呜呜完成签到,获得积分10
2秒前
2秒前
Riki发布了新的文献求助10
3秒前
88发布了新的文献求助10
3秒前
4秒前
充电宝应助zfy采纳,获得10
5秒前
sak完成签到,获得积分10
6秒前
Shuo Yang发布了新的文献求助20
6秒前
呜呜呜呜发布了新的文献求助10
6秒前
在水一方应助hhzz采纳,获得10
6秒前
旧是完成签到 ,获得积分10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
杨小胖完成签到 ,获得积分10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
mm发布了新的文献求助10
8秒前
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
shouyu29应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
RC_Wang应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得30
9秒前
sutharsons应助科研通管家采纳,获得30
9秒前
归海含烟完成签到,获得积分10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
shire应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
思源应助科研通管家采纳,获得10
9秒前
RC_Wang应助科研通管家采纳,获得10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808