已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Coarse-To-Fine Segmentation of Organs at Risk in Nasopharyngeal Carcinoma Radiotherapy

人工智能 编码器 图像分割 计算机视觉 分割 边界(拓扑) 计算机科学 模式识别(心理学) 数学 操作系统 数学分析
作者
Qiang Ma,Chen Zu,Xi Wu,Jiliu Zhou,Yan Wang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 358-368 被引量:5
标识
DOI:10.1007/978-3-030-87193-2_34
摘要

Accurate segmentation of organs at risk (OARs) from medical images plays a crucial role in nasopharyngeal carcinoma (NPC) radiotherapy. For automatic OARs segmentation, several approaches based on deep learning have been proposed, however, most of them face the problem of unbalanced foreground and background in NPC medical images, leading to unsatisfactory segmentation performance, especially for the OARs with small size. In this paper, we propose a novel end-to-end two-stage segmentation network, including the first stage for coarse segmentation by an encoder-decoder architecture embedded with a target detection module (TDM) and the second stage for refinement by two elaborate strategies for large- and small-size OARs, respectively. Specifically, guided by TDM, the coarse segmentation network can generate preliminary results which are further divided into large- and small-size OARs groups according to a preset threshold with respect to the size of targets. For the large-size OARs, considering the boundary ambiguity problem of the targets, we design an edge-aware module (EAM) to preserve the boundary details and thus improve the segmentation performance. On the other hand, a point cloud module (PCM) is devised to refine the segmentation results for small-size OARs, since the point cloud data is sensitive to sparse structures and fits the characteristic of small-size OARs. We evaluate our method on the public Head&Neck dataset, and the experimental results demonstrate the superiority of our method compared with the state-of-the-art methods. Code is available at https://github.com/DeepMedLab/Coarse-to-fine-segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
tleeny发布了新的文献求助10
3秒前
董小婷完成签到 ,获得积分10
4秒前
Josiah发布了新的文献求助10
4秒前
5秒前
情怀应助jkljlj采纳,获得10
6秒前
年轻时光发布了新的文献求助10
6秒前
斯文败类应助qqq采纳,获得10
7秒前
小五发布了新的文献求助10
7秒前
Paradox发布了新的文献求助10
8秒前
CipherSage应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
今后应助科研通管家采纳,获得10
11秒前
今后应助科研通管家采纳,获得10
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
12秒前
打打应助科研通管家采纳,获得10
12秒前
今后应助科研通管家采纳,获得10
12秒前
星辰大海应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
打打应助tleeny采纳,获得10
13秒前
14秒前
beibeibaobao关注了科研通微信公众号
16秒前
无极微光应助Vino采纳,获得20
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5815028
求助须知:如何正确求助?哪些是违规求助? 5922606
关于积分的说明 15541962
捐赠科研通 4937786
什么是DOI,文献DOI怎么找? 2659323
邀请新用户注册赠送积分活动 1605652
关于科研通互助平台的介绍 1560203