Waste collection vehicle navigation in modern cities

卡车 废物收集 数据收集 人口 机器人学 路径(计算) 计算机科学 机器人 工程类 城市固体废物 人工智能 废物管理 汽车工程 统计 社会学 人口学 程序设计语言 数学
作者
Nikolaos Baras,Dimitris Ziouzios,Minas Dasygenis,Constantinos Tsanaktsidis
标识
DOI:10.1109/seeda-cecnsm53056.2021.9565885
摘要

It is evident that over the last years the usage of robotics and automated machinery in our society has been rapidly increasing. Specifically, the usage of automated vehicles in industrial and also everyday life has benefited all of humanity greatly. One area that has not been fully explored is the usage of automated robotic vehicles in waste management within cities. It is clear that the rate of urban waste production is constantly increasing as a result of the Earth's rapid population growth and modern lifestyle. People consume more and more, and as a result, they produce more and more waste. In most countries, these waste materials are being thrown into bins in the streets of the cities. Opposed to the traditional waste collection model where a waste collection truck, passes from all smart bins and picks up the waste materials in a pr- defined route, we propose an algorithm to dynamically generate these routes in real time, based from the data received from the installed smart-bin devices. The vehicles, however, are only as efficient as the algorithms that govern them. The majority of the waste collection algorithms found in literature, however, are statically designed and cannot handle multi-robot situations and utilize data received in real time. The proposed algorithm of this paper attempts to give a solution to this issue; utilizing more than one waste collection vehicles simultaneously to allocate waste pick up tasks and tailor the navigation path of each vehicle based on its characteristics, like its type and its current location within the environment so as to minimize the pick up timing. We evaluated the proposed methodology in a synthetic realistic environment and and demonstrated that the algorithm is capable of finding an improved solution within a realistic time frame.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
卓哥发布了新的文献求助10
1秒前
科研通AI5应助sansan采纳,获得10
2秒前
2秒前
2秒前
脑洞疼应助杰森斯坦虎采纳,获得10
2秒前
4秒前
5秒前
研友_QQC完成签到,获得积分10
5秒前
NeuroWhite完成签到,获得积分10
5秒前
5秒前
搜索v完成签到,获得积分10
6秒前
liuchuck完成签到 ,获得积分10
6秒前
6秒前
6秒前
猫独秀完成签到,获得积分10
6秒前
8秒前
buno应助yuefeng采纳,获得10
8秒前
yiming完成签到,获得积分10
8秒前
落落发布了新的文献求助10
9秒前
清秋若月完成签到 ,获得积分10
9秒前
9秒前
呵呵呵呵完成签到,获得积分10
10秒前
10秒前
远方发布了新的文献求助10
11秒前
zxc111关注了科研通微信公众号
11秒前
12秒前
nanhe698发布了新的文献求助10
12秒前
Huang完成签到,获得积分10
12秒前
碳土不凡完成签到 ,获得积分10
13秒前
13秒前
淡淡采白发布了新的文献求助10
14秒前
14秒前
15秒前
Akim应助dingdong采纳,获得10
15秒前
15秒前
15秒前
satchzhao发布了新的文献求助10
15秒前
可爱的函函应助尺素寸心采纳,获得10
15秒前
66发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808