Waste collection vehicle navigation in modern cities

卡车 废物收集 数据收集 人口 机器人学 路径(计算) 计算机科学 机器人 工程类 城市固体废物 人工智能 废物管理 汽车工程 统计 人口学 数学 社会学 程序设计语言
作者
Nikolaos Baras,Dimitris Ziouzios,Minas Dasygenis,Constantinos Tsanaktsidis
标识
DOI:10.1109/seeda-cecnsm53056.2021.9565885
摘要

It is evident that over the last years the usage of robotics and automated machinery in our society has been rapidly increasing. Specifically, the usage of automated vehicles in industrial and also everyday life has benefited all of humanity greatly. One area that has not been fully explored is the usage of automated robotic vehicles in waste management within cities. It is clear that the rate of urban waste production is constantly increasing as a result of the Earth's rapid population growth and modern lifestyle. People consume more and more, and as a result, they produce more and more waste. In most countries, these waste materials are being thrown into bins in the streets of the cities. Opposed to the traditional waste collection model where a waste collection truck, passes from all smart bins and picks up the waste materials in a pr- defined route, we propose an algorithm to dynamically generate these routes in real time, based from the data received from the installed smart-bin devices. The vehicles, however, are only as efficient as the algorithms that govern them. The majority of the waste collection algorithms found in literature, however, are statically designed and cannot handle multi-robot situations and utilize data received in real time. The proposed algorithm of this paper attempts to give a solution to this issue; utilizing more than one waste collection vehicles simultaneously to allocate waste pick up tasks and tailor the navigation path of each vehicle based on its characteristics, like its type and its current location within the environment so as to minimize the pick up timing. We evaluated the proposed methodology in a synthetic realistic environment and and demonstrated that the algorithm is capable of finding an improved solution within a realistic time frame.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
852应助努力努力再努力采纳,获得20
1秒前
1秒前
1秒前
纯粹发布了新的文献求助10
1秒前
研友_VZG7GZ应助甜甜安彤采纳,获得10
3秒前
秀丽笑容发布了新的文献求助20
3秒前
3秒前
热情饼干完成签到,获得积分10
4秒前
5秒前
5秒前
半颜发布了新的文献求助10
5秒前
腼腆的沛蓝完成签到,获得积分20
6秒前
6秒前
6秒前
xiaobao完成签到,获得积分10
7秒前
阿斯蒂和琴酒完成签到 ,获得积分10
7秒前
8秒前
愉快的花卷完成签到,获得积分10
9秒前
优美亦云发布了新的文献求助10
11秒前
小马甲应助厉害的潇潇采纳,获得10
11秒前
okguy0210发布了新的文献求助10
12秒前
不爱吃韭菜完成签到 ,获得积分10
12秒前
nenoaowu发布了新的文献求助10
13秒前
15秒前
小二郎应助小米采纳,获得10
15秒前
wwb关闭了wwb文献求助
15秒前
虚幻的香彤完成签到,获得积分10
16秒前
16秒前
有魅力的香芦完成签到,获得积分10
16秒前
爆米花应助饼饼采纳,获得10
17秒前
科研通AI6应助Doctor_Xie采纳,获得30
17秒前
EvZzIcarus发布了新的文献求助10
19秒前
快乐的便当完成签到 ,获得积分10
19秒前
噢呀完成签到,获得积分10
19秒前
RUC_Zhao完成签到,获得积分10
21秒前
今后应助张津浩采纳,获得10
22秒前
嘟嘟嘟发布了新的文献求助10
22秒前
热情饼干发布了新的文献求助30
22秒前
23秒前
汉堡包应助djbj2022采纳,获得10
24秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5501121
求助须知:如何正确求助?哪些是违规求助? 4597536
关于积分的说明 14459301
捐赠科研通 4530913
什么是DOI,文献DOI怎么找? 2483008
邀请新用户注册赠送积分活动 1466691
关于科研通互助平台的介绍 1439318