DBDNet for denoising in ESPI wrapped phase patterns with high density and high speckle noise

散斑噪声 电子散斑干涉技术 斑点图案 降噪 计算机科学 噪音(视频) 卷积神经网络 卷积(计算机科学) 人工智能 光学 人工神经网络 物理 图像(数学)
作者
Jianming Li,Chen Tang,Min Xu,Zirui Fan,Zhenkun Lei
出处
期刊:Applied Optics [The Optical Society]
卷期号:60 (32): 10070-10070 被引量:5
标识
DOI:10.1364/ao.442293
摘要

In this paper, we propose a dilated-blocks-based deep convolution neural network, named DBDNet, for denoising in electronic speckle pattern interferometry (ESPI) wrapped phase patterns with high density and high speckle noise. In our method, the proposed dilated blocks have a specific sequence of dilation rate and a multilayer cascading fusion structure, which can better improve the effect of speckle noise reduction, especially for phase patterns with high noise and high density. Furthermore, we have built an abundant training dataset with varieties of densities and noise levels to train our network; thus, the trained model has a good generalization and can denoise ESPI wrapped phase in various circumstances. The network can get denoised results directly and does not need any pre-process or post-process. We test our method on one group of computer-simulated ESPI phase patterns and one group of experimentally obtained ESPI phase patterns. The test images have a high degree of speckle noise and different densities. We compare our method with two representative methods in the spatial domain and frequency domain, named oriented-couple partial differential equation and windowed Fourier low pass filter (LPF), and a method based on deep learning, named fast and flexible denoising convolutional neural network (FFDNet). The denoising performance is evaluated quantitatively and qualitatively. The results demonstrate that our method can reduce high speckle noise and restore the dense areas of ESPI phase patterns, and get better results than the compared methods. We also apply our method to a series of phase patterns from a dynamic measurement and get successful results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助二手的科学家采纳,获得10
1秒前
1秒前
开门啊菇凉完成签到,获得积分0
1秒前
雨相所至应助含糊的鞋垫采纳,获得15
1秒前
Wings完成签到,获得积分10
1秒前
orchid完成签到,获得积分10
1秒前
Michael关注了科研通微信公众号
4秒前
机灵的冰夏完成签到,获得积分10
4秒前
科研通AI2S应助冲冲冲采纳,获得10
4秒前
Kirin完成签到 ,获得积分10
4秒前
我是老大应助高贵的往事采纳,获得10
5秒前
5秒前
舒心雁风完成签到 ,获得积分10
6秒前
6秒前
FJ完成签到,获得积分20
6秒前
2428完成签到,获得积分10
6秒前
小龙儿完成签到,获得积分10
7秒前
lizz发布了新的文献求助10
7秒前
MYZ完成签到,获得积分10
7秒前
越旻完成签到,获得积分10
8秒前
8秒前
大模型应助寻一采纳,获得10
8秒前
等待冬易完成签到,获得积分10
9秒前
9秒前
CodeCraft应助chace采纳,获得10
10秒前
隐形曼青应助luoluo采纳,获得10
10秒前
10秒前
繁荣的代秋完成签到,获得积分10
11秒前
深情安青应助南烟采纳,获得10
11秒前
Singularity应助2428采纳,获得10
11秒前
安静的难破完成签到,获得积分10
11秒前
上官若男应助zhangpeng采纳,获得10
11秒前
Sxr发布了新的文献求助10
12秒前
12秒前
星辰大海应助独特的万声采纳,获得10
12秒前
13秒前
13秒前
Andy完成签到 ,获得积分10
13秒前
Akim应助煎饼采纳,获得10
13秒前
14秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147464
求助须知:如何正确求助?哪些是违规求助? 2798635
关于积分的说明 7830317
捐赠科研通 2455424
什么是DOI,文献DOI怎么找? 1306789
科研通“疑难数据库(出版商)”最低求助积分说明 627899
版权声明 601587