DBDNet for denoising in ESPI wrapped phase patterns with high density and high speckle noise

散斑噪声 电子散斑干涉技术 斑点图案 降噪 计算机科学 噪音(视频) 卷积神经网络 卷积(计算机科学) 人工智能 光学 人工神经网络 物理 图像(数学)
作者
Jianming Li,Chen Tang,Min Xu,Zirui Fan,Zhenkun Lei
出处
期刊:Applied Optics [Optica Publishing Group]
卷期号:60 (32): 10070-10070 被引量:5
标识
DOI:10.1364/ao.442293
摘要

In this paper, we propose a dilated-blocks-based deep convolution neural network, named DBDNet, for denoising in electronic speckle pattern interferometry (ESPI) wrapped phase patterns with high density and high speckle noise. In our method, the proposed dilated blocks have a specific sequence of dilation rate and a multilayer cascading fusion structure, which can better improve the effect of speckle noise reduction, especially for phase patterns with high noise and high density. Furthermore, we have built an abundant training dataset with varieties of densities and noise levels to train our network; thus, the trained model has a good generalization and can denoise ESPI wrapped phase in various circumstances. The network can get denoised results directly and does not need any pre-process or post-process. We test our method on one group of computer-simulated ESPI phase patterns and one group of experimentally obtained ESPI phase patterns. The test images have a high degree of speckle noise and different densities. We compare our method with two representative methods in the spatial domain and frequency domain, named oriented-couple partial differential equation and windowed Fourier low pass filter (LPF), and a method based on deep learning, named fast and flexible denoising convolutional neural network (FFDNet). The denoising performance is evaluated quantitatively and qualitatively. The results demonstrate that our method can reduce high speckle noise and restore the dense areas of ESPI phase patterns, and get better results than the compared methods. We also apply our method to a series of phase patterns from a dynamic measurement and get successful results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助未来2采纳,获得10
刚刚
1秒前
科研小天才完成签到,获得积分10
1秒前
大个应助庾楼月宛如昨采纳,获得10
1秒前
张晓林完成签到,获得积分20
2秒前
2秒前
Lei完成签到,获得积分20
3秒前
3秒前
今后应助勤恳幻梦采纳,获得20
3秒前
3秒前
4秒前
科研通AI2S应助星星之火采纳,获得10
4秒前
Kaz发布了新的文献求助30
5秒前
Elaine完成签到,获得积分10
5秒前
t通应助RY采纳,获得10
5秒前
5秒前
可爱的函函应助sunsunsun采纳,获得10
5秒前
玩命的鹤完成签到 ,获得积分10
5秒前
Tuffy_Du发布了新的文献求助10
5秒前
热心市民小红花应助tyj采纳,获得10
6秒前
6秒前
7秒前
9秒前
zgd发布了新的文献求助10
10秒前
小核桃完成签到,获得积分10
10秒前
大溺发布了新的文献求助10
11秒前
852应助pdf采纳,获得10
11秒前
佛系发布了新的文献求助10
12秒前
13秒前
袁睿韬应助星星采纳,获得10
13秒前
13秒前
张晓林发布了新的文献求助30
14秒前
专注的映之完成签到 ,获得积分10
14秒前
张爱学发布了新的文献求助10
14秒前
RY完成签到,获得积分10
15秒前
JamesPei应助cc采纳,获得10
17秒前
yookia应助明理的凌旋采纳,获得10
17秒前
18秒前
qiqi完成签到,获得积分10
19秒前
未来2发布了新的文献求助10
19秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961980
求助须知:如何正确求助?哪些是违规求助? 3508280
关于积分的说明 11140173
捐赠科研通 3240897
什么是DOI,文献DOI怎么找? 1791091
邀请新用户注册赠送积分活动 872726
科研通“疑难数据库(出版商)”最低求助积分说明 803352