A robust single-pixel particle image velocimetry based on fully convolutional networks with cross-correlation embedded

稳健性(进化) 互相关 粒子图像测速 像素 物理 反褶积 矢量场 人工智能 算法 卷积神经网络 图像分辨率 粒子跟踪测速 模式识别(心理学) 计算机科学 数学 数学分析 生物化学 化学 机械 湍流 基因 热力学
作者
Qi Gao,Hongtao Lin,Han Tu,Haoran Zhu,Runjie Wei,Guoping Zhang,Xueming Shao
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:33 (12) 被引量:31
标识
DOI:10.1063/5.0077146
摘要

Particle image velocimetry (PIV) is essential in experimental fluid dynamics. In the current work, we propose a new velocity field estimation paradigm, which is a synergetic combination of cross correlation and fully convolutional network (CC-FCN). Specifically, the fully convolutional network is used to optimize and correct a coarse velocity guess to achieve a super-resolution calculation. And the traditional cross correlation method provides the initial velocity field based on a coarse correlation with a large interrogation window. As a reference, the coarse velocity guess helps with improving the robustness of the proposed algorithm. CC-FCN has two types of input layers, one is for the particle images, and the other is for the initial velocity field calculated using cross correlation with a coarse resolution. First, two pyramidal modules extract features of particle images and initial velocity field, respectively. Then the fusion module appropriately fuses these features. Finally, CC-FCN achieves the super-resolution calculation through a series of deconvolution layers to obtain the single-pixel velocity field. As the supervised learning strategy is considered, synthetic data sets including ground-truth fluid motions are generated to train the network parameters. Synthetic and real experimental PIV data sets are used to test the trained neural network in terms of accuracy, precision, spatial resolution and robustness. The test results show that these attributes of CC-FCN are further improved compared with those of other tested PIV algorithms. The proposed model could therefore provide competitive and robust estimations for PIV experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
JamesPei应助若离采纳,获得10
1秒前
谢小盟发布了新的文献求助200
2秒前
ZM发布了新的文献求助10
3秒前
jitanxiang完成签到,获得积分10
4秒前
4秒前
司空元正完成签到 ,获得积分10
4秒前
Yakamoz发布了新的文献求助10
5秒前
刘汐发布了新的文献求助10
6秒前
6秒前
CipherSage应助科研人河北采纳,获得10
7秒前
机智的靖柔完成签到,获得积分10
8秒前
9秒前
靳韩羽发布了新的文献求助10
9秒前
彭于晏应助李李李娟采纳,获得10
10秒前
11秒前
11秒前
上官若男应助wlm采纳,获得10
11秒前
learningu举报cy求助涉嫌违规
12秒前
UniTTEC9560完成签到,获得积分10
13秒前
若离发布了新的文献求助10
14秒前
冰棒比冰冰完成签到 ,获得积分10
14秒前
14秒前
刘lala完成签到,获得积分10
15秒前
77完成签到,获得积分10
15秒前
小二郎应助狼芽棒采纳,获得10
16秒前
17秒前
17秒前
18秒前
今后应助靳韩羽采纳,获得10
19秒前
谢小盟发布了新的文献求助200
19秒前
科研通AI6应助shareef采纳,获得10
20秒前
20秒前
翟思宇完成签到,获得积分10
21秒前
万事顺意完成签到,获得积分10
21秒前
铁慧发布了新的文献求助10
22秒前
fs发布了新的文献求助10
22秒前
Yakamoz完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5061798
求助须知:如何正确求助?哪些是违规求助? 4285762
关于积分的说明 13355425
捐赠科研通 4103625
什么是DOI,文献DOI怎么找? 2246823
邀请新用户注册赠送积分活动 1252546
关于科研通互助平台的介绍 1183447