A robust single-pixel particle image velocimetry based on fully convolutional networks with cross-correlation embedded

稳健性(进化) 互相关 粒子图像测速 像素 物理 反褶积 矢量场 人工智能 算法 卷积神经网络 图像分辨率 粒子跟踪测速 模式识别(心理学) 计算机科学 数学 数学分析 生物化学 化学 机械 湍流 基因 热力学
作者
Qi Gao,Hongtao Lin,Han Tu,Haoran Zhu,Runjie Wei,Guoping Zhang,Xueming Shao
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:33 (12) 被引量:31
标识
DOI:10.1063/5.0077146
摘要

Particle image velocimetry (PIV) is essential in experimental fluid dynamics. In the current work, we propose a new velocity field estimation paradigm, which is a synergetic combination of cross correlation and fully convolutional network (CC-FCN). Specifically, the fully convolutional network is used to optimize and correct a coarse velocity guess to achieve a super-resolution calculation. And the traditional cross correlation method provides the initial velocity field based on a coarse correlation with a large interrogation window. As a reference, the coarse velocity guess helps with improving the robustness of the proposed algorithm. CC-FCN has two types of input layers, one is for the particle images, and the other is for the initial velocity field calculated using cross correlation with a coarse resolution. First, two pyramidal modules extract features of particle images and initial velocity field, respectively. Then the fusion module appropriately fuses these features. Finally, CC-FCN achieves the super-resolution calculation through a series of deconvolution layers to obtain the single-pixel velocity field. As the supervised learning strategy is considered, synthetic data sets including ground-truth fluid motions are generated to train the network parameters. Synthetic and real experimental PIV data sets are used to test the trained neural network in terms of accuracy, precision, spatial resolution and robustness. The test results show that these attributes of CC-FCN are further improved compared with those of other tested PIV algorithms. The proposed model could therefore provide competitive and robust estimations for PIV experiments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
深情丸子发布了新的文献求助10
3秒前
4秒前
风趣绮烟发布了新的文献求助10
5秒前
Daodao发布了新的文献求助10
5秒前
9秒前
南京喵科大学完成签到,获得积分10
10秒前
丘比特应助简绮采纳,获得10
11秒前
厚朴应助蓝莓西西果冻采纳,获得10
12秒前
大模型应助风趣绮烟采纳,获得100
18秒前
jojo完成签到 ,获得积分10
20秒前
21秒前
俊逸的问薇完成签到 ,获得积分10
24秒前
30秒前
32秒前
独特的蛋挞完成签到,获得积分10
33秒前
学术laji发布了新的文献求助10
35秒前
简绮发布了新的文献求助10
38秒前
42秒前
青春完成签到,获得积分10
43秒前
大芳儿发布了新的文献求助10
43秒前
青春发布了新的文献求助10
46秒前
47秒前
47秒前
48秒前
RoboSAMA发布了新的文献求助20
52秒前
LXZ发布了新的文献求助10
53秒前
hoy发布了新的文献求助10
54秒前
卷卷完成签到 ,获得积分10
55秒前
zhonglv7应助小黑黑采纳,获得10
55秒前
脑洞疼应助东方越彬采纳,获得10
55秒前
Jodie发布了新的文献求助10
56秒前
浮游应助孙乐777采纳,获得10
1分钟前
简绮完成签到 ,获得积分10
1分钟前
1分钟前
EMMA完成签到,获得积分10
1分钟前
光亮雨完成签到 ,获得积分10
1分钟前
HuiYmao完成签到,获得积分20
1分钟前
1分钟前
goforit完成签到,获得积分0
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557746
求助须知:如何正确求助?哪些是违规求助? 4642805
关于积分的说明 14669158
捐赠科研通 4584228
什么是DOI,文献DOI怎么找? 2514701
邀请新用户注册赠送积分活动 1488877
关于科研通互助平台的介绍 1459555