A robust single-pixel particle image velocimetry based on fully convolutional networks with cross-correlation embedded

稳健性(进化) 互相关 粒子图像测速 像素 物理 反褶积 矢量场 人工智能 算法 卷积神经网络 图像分辨率 粒子跟踪测速 模式识别(心理学) 计算机科学 数学 数学分析 基因 热力学 化学 湍流 机械 生物化学
作者
Qi Gao,Hongtao Lin,Han Tu,Haoran Zhu,Runjie Wei,Guoping Zhang,Xueming Shao
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:33 (12) 被引量:31
标识
DOI:10.1063/5.0077146
摘要

Particle image velocimetry (PIV) is essential in experimental fluid dynamics. In the current work, we propose a new velocity field estimation paradigm, which is a synergetic combination of cross correlation and fully convolutional network (CC-FCN). Specifically, the fully convolutional network is used to optimize and correct a coarse velocity guess to achieve a super-resolution calculation. And the traditional cross correlation method provides the initial velocity field based on a coarse correlation with a large interrogation window. As a reference, the coarse velocity guess helps with improving the robustness of the proposed algorithm. CC-FCN has two types of input layers, one is for the particle images, and the other is for the initial velocity field calculated using cross correlation with a coarse resolution. First, two pyramidal modules extract features of particle images and initial velocity field, respectively. Then the fusion module appropriately fuses these features. Finally, CC-FCN achieves the super-resolution calculation through a series of deconvolution layers to obtain the single-pixel velocity field. As the supervised learning strategy is considered, synthetic data sets including ground-truth fluid motions are generated to train the network parameters. Synthetic and real experimental PIV data sets are used to test the trained neural network in terms of accuracy, precision, spatial resolution and robustness. The test results show that these attributes of CC-FCN are further improved compared with those of other tested PIV algorithms. The proposed model could therefore provide competitive and robust estimations for PIV experiments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
xf完成签到,获得积分10
3秒前
4秒前
noneofyours关注了科研通微信公众号
4秒前
5秒前
可爱奇异果完成签到 ,获得积分10
7秒前
读个屁完成签到,获得积分10
7秒前
情怀应助小可爱采纳,获得10
7秒前
泊頔完成签到,获得积分10
8秒前
无心的可仁完成签到,获得积分10
9秒前
wanyanjin应助科研通管家采纳,获得10
10秒前
julia应助科研通管家采纳,获得10
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
毛豆应助科研通管家采纳,获得10
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
读个屁发布了新的文献求助10
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
10秒前
打打应助科研通管家采纳,获得10
10秒前
aosik应助科研通管家采纳,获得10
10秒前
10秒前
科目三应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
弄啥嘞昂应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
zic123应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
julia应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
Peak_Chen应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
xiaofei应助科研通管家采纳,获得10
11秒前
zic123应助科研通管家采纳,获得10
11秒前
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
zhangyifan666应助科研通管家采纳,获得10
12秒前
Lucas应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
高分求助中
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 520
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464759
求助须知:如何正确求助?哪些是违规求助? 3058048
关于积分的说明 9059613
捐赠科研通 2748216
什么是DOI,文献DOI怎么找? 1507774
科研通“疑难数据库(出版商)”最低求助积分说明 696693
邀请新用户注册赠送积分活动 696340