乳状液
流变学
甲基纤维素
化学工程
微观结构
化学
材料科学
色谱法
高分子化学
纤维素
复合材料
有机化学
工程类
作者
Martha Laura García-Ortega,Jorge F. Toro‐Vázquez,Sunita Ghosh
标识
DOI:10.1016/j.foodres.2021.110763
摘要
The food industry confronts an enormous challenge to develop stable margarine-type water-in-vegetable oil (W/O) emulsion-based table spreads with reduced concentration of saturated fat and without trans fats. In the present work, we developed a gelled W/O emulsion (Gelled-W/O-E) containing 20% of water using a mixture of a conventional W/O emulsion (W/O-E) stabilized with glycerol monostearate (GMS), and an ethyl cellulose (EC) oleogel. The mechanical, microstructure and stability of the resulting gelled emulsion (Gelled-W/O-E) was compared with control systems consisting of conventional W/O emulsions (W/O-E) and EC-GMS oleogels (EC-GMS-O; no water added) formulated using the same GMS (0.5% and 1.0%) and EC (7%) concentration as in the Gelled-W/O-E. The Gelled-W/O-E showed higher elasticity and emulsion stability in comparison with the control systems. This in spite the EC and GMS concentrations used were below the minimal concentration required to develop a gel, and the tentatively lower solid content in the Gelled-W/O-E than in the EC-GMS-O because the presence of water. We observed that by increasing the GMS concentration in the Gelled-W/O-E, the water droplet size decreased as gel elasticity and W/O emulsion stability significantly increased. We associated this behavior to a synergistic GMS-EC interaction that kept the GMS at the water-oil droplet interface. These results showed the role of water droplets as active fillers in determining the rheological properties of the Gelled-W/O-E, and that the GMS efficiency as emulsifier increased in the presence of EC in the oil phase. After comparing the microstructural properties of commercial margarine spreads with those of the Gelled-W/O-E, we concluded that the structured W/O emulsion is a novel way to achieve similar functionality to margarine spreads, without the use of saturated and trans-fats.
科研通智能强力驱动
Strongly Powered by AbleSci AI