已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Survey of Deep Active Learning

计算机科学 深度学习 人工智能 机器学习 注释 质量(理念) 互联网 主动学习(机器学习) 样品(材料) 数据科学 万维网 色谱法 认识论 哲学 化学
作者
Pengzhen Ren,Yun Xiao,Xiaojun Chang,Po-Yao Huang,Zhihui Li,Brij B. Gupta,Xiaojiang Chen,Xin Wang
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:54 (9): 1-40 被引量:611
标识
DOI:10.1145/3472291
摘要

Active learning (AL) attempts to maximize a model’s performance gain while annotating the fewest samples possible. Deep learning (DL) is greedy for data and requires a large amount of data supply to optimize a massive number of parameters if the model is to learn how to extract high-quality features. In recent years, due to the rapid development of internet technology, we have entered an era of information abundance characterized by massive amounts of available data. As a result, DL has attracted significant attention from researchers and has been rapidly developed. Compared with DL, however, researchers have a relatively low interest in AL. This is mainly because before the rise of DL, traditional machine learning requires relatively few labeled samples, meaning that early AL is rarely according the value it deserves. Although DL has made breakthroughs in various fields, most of this success is due to a large number of publicly available annotated datasets. However, the acquisition of a large number of high-quality annotated datasets consumes a lot of manpower, making it unfeasible in fields that require high levels of expertise (such as speech recognition, information extraction, medical images, etc.). Therefore, AL is gradually coming to receive the attention it is due. It is therefore natural to investigate whether AL can be used to reduce the cost of sample annotation while retaining the powerful learning capabilities of DL. As a result of such investigations, deep active learning (DeepAL) has emerged. Although research on this topic is quite abundant, there has not yet been a comprehensive survey of DeepAL-related works; accordingly, this article aims to fill this gap. We provide a formal classification method for the existing work, along with a comprehensive and systematic overview. In addition, we also analyze and summarize the development of DeepAL from an application perspective. Finally, we discuss the confusion and problems associated with DeepAL and provide some possible development directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
遮沙避风了完成签到,获得积分10
1秒前
pzf完成签到 ,获得积分10
1秒前
inRe发布了新的文献求助10
1秒前
科目三应助夏天采纳,获得20
4秒前
迷路的雅霜完成签到,获得积分10
4秒前
科研通AI2S应助可耐的世平采纳,获得10
7秒前
xjcy应助可耐的世平采纳,获得10
7秒前
科研通AI2S应助可耐的世平采纳,获得10
7秒前
科研通AI2S应助可耐的世平采纳,获得10
7秒前
7秒前
赘婿应助科研通管家采纳,获得20
11秒前
Ava应助科研通管家采纳,获得10
11秒前
不配.应助科研通管家采纳,获得10
11秒前
不配.应助科研通管家采纳,获得10
11秒前
已知中的未知完成签到 ,获得积分10
12秒前
haige发布了新的文献求助10
12秒前
简单嚓茶完成签到,获得积分10
13秒前
田様应助三两白菜采纳,获得10
14秒前
星辰大海应助可靠的安寒采纳,获得10
18秒前
Dr.胡发布了新的文献求助10
20秒前
21秒前
21秒前
22秒前
林鹏达完成签到,获得积分10
23秒前
nolan驳回了乐乐应助
23秒前
FashionBoy应助zcz采纳,获得10
24秒前
科研通AI2S应助tian采纳,获得10
25秒前
畅快的荟发布了新的文献求助10
26秒前
春天在这李完成签到,获得积分10
28秒前
瓶子完成签到 ,获得积分10
29秒前
情怀应助慕冰蝶采纳,获得10
30秒前
欢呼沅完成签到,获得积分10
30秒前
Lucas应助shawwcus采纳,获得10
31秒前
点心完成签到,获得积分10
31秒前
圆润的糯米糍完成签到 ,获得积分10
31秒前
Very完成签到 ,获得积分20
32秒前
阿卡波糖完成签到,获得积分10
33秒前
Dr.胡完成签到,获得积分10
35秒前
墨点完成签到 ,获得积分10
36秒前
haige完成签到 ,获得积分10
37秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3219496
求助须知:如何正确求助?哪些是违规求助? 2868323
关于积分的说明 8160534
捐赠科研通 2535378
什么是DOI,文献DOI怎么找? 1367766
科研通“疑难数据库(出版商)”最低求助积分说明 645094
邀请新用户注册赠送积分活动 618424