变分不等式
李普希茨连续性
收敛速度
人工神经网络
数学
非线性系统
投影(关系代数)
趋同(经济学)
数学优化
互补性(分子生物学)
应用数学
混合互补问题
指数增长
特征(语言学)
计算机科学
算法
人工智能
数学分析
频道(广播)
经济
计算机网络
哲学
经济增长
物理
生物
量子力学
语言学
遗传学
作者
Xingxing Ju,Hangjun Che,Chuandong Li,Xing He,Gang Feng
标识
DOI:10.1016/j.neucom.2021.04.059
摘要
This paper proposes a novel proximal projection neural network (PPNN) to deal with mixed variational inequalities. It is shown that the PPNN has a unique continuous solution under the condition of Lipschitz continuity and that the trajectories of the PPNN converge to the unique equilibrium solution exponentially under some mild conditions. In addition, we study the influence of different parameters on the convergence rate. Furthermore, the proposed PPNN is applied in solving nonlinear complementarity problems, min–max problems, sparse recovery problems and classification and feature selection problems. Finally, numerical and experimental examples are presented to validate the effectiveness of the proposed neurodynamic network.
科研通智能强力驱动
Strongly Powered by AbleSci AI