Joint estimation of state of charge and state of health for lithium‐ion battery based on dual adaptive extended Kalman filter

荷电状态 卡尔曼滤波器 扩展卡尔曼滤波器 电池(电) 健康状况 递归最小平方滤波器 控制理论(社会学) 残余物 锂离子电池 计算机科学 工程类 算法 自适应滤波器 功率(物理) 人工智能 物理 控制(管理) 量子力学
作者
Jiabo Li,Min Ye,Kangping Gao,Xinxin Xu,Meng Wei,Shengjie Jiao
出处
期刊:International Journal of Energy Research [Wiley]
卷期号:45 (9): 13307-13322 被引量:41
标识
DOI:10.1002/er.6658
摘要

Lithium-ion batteries (LIBs) are widely used in electric vehicles due to its high energy density and low pollution. As the key monitoring parameters of battery management system (BMS), accurate estimation of the state of charge (SOC) and state of health (SOH) can promote the utilization rate of battery, which is of great significance to ensure the safe use of LIBs. In this paper, a novel dual Kalman filter method is proposed to achieve simultaneous SOC and SOH estimation. This paper improves the estimation accuracy of SOC and SOH from the following four aspects. Firstly, the widely used equivalent circuit model is established as the battery model in this paper, and the forgetting factor recursive least squares (FFRLS) method is applied to identify the model parameters. Secondly, two kinds of single-variable battery states are established to analyze the influence of OCV-SOC curve and battery capacity on SOC estimation. Based on this, an error model is proposed combined with Kalman filter to achieve better estimation results of SOC and SOH. Besides, to promote the accuracy of SOC estimation, based on the error innovation sequence (EIS) and residual innovation sequence (RIS), the improved dual adaptive extended Kalman filter (IDAEKF) algorithm based on dynamic window is proposed. Finally, the superiority of the proposed model is verified under different cycles. Experimental results show that the estimation error of SOC and SOH is controlled within 1%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fuyu98发布了新的文献求助30
2秒前
Evander发布了新的文献求助10
2秒前
lemon发布了新的文献求助10
4秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
ccm应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
yzm发布了新的文献求助10
5秒前
5秒前
心心应助科研通管家采纳,获得10
5秒前
abccd123完成签到,获得积分10
5秒前
今后应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
77完成签到,获得积分10
6秒前
6秒前
7秒前
英姑应助八月宁静采纳,获得10
8秒前
上官若男应助万松辉采纳,获得10
9秒前
77发布了新的文献求助10
11秒前
研友_VZG7GZ应助yzm采纳,获得10
11秒前
可爱的函函应助应急食品采纳,获得10
12秒前
13秒前
汐颜紫雨完成签到,获得积分10
14秒前
15秒前
15秒前
fuyu98完成签到,获得积分10
16秒前
16秒前
mashibeo发布了新的文献求助30
18秒前
赵俊博发布了新的文献求助10
18秒前
盐焗小星球完成签到 ,获得积分10
18秒前
昏睡的朝雪完成签到,获得积分20
18秒前
GGMJ发布了新的文献求助10
19秒前
Aikesi完成签到,获得积分10
19秒前
lw不好找完成签到,获得积分10
20秒前
刻苦念桃发布了新的文献求助10
20秒前
pluto应助yuanying采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536873
求助须知:如何正确求助?哪些是违规求助? 4624540
关于积分的说明 14592255
捐赠科研通 4564957
什么是DOI,文献DOI怎么找? 2502101
邀请新用户注册赠送积分活动 1480843
关于科研通互助平台的介绍 1452073