Joint estimation of state of charge and state of health for lithium‐ion battery based on dual adaptive extended Kalman filter

荷电状态 卡尔曼滤波器 扩展卡尔曼滤波器 电池(电) 健康状况 递归最小平方滤波器 控制理论(社会学) 残余物 锂离子电池 计算机科学 工程类 算法 自适应滤波器 功率(物理) 人工智能 物理 控制(管理) 量子力学
作者
Jiabo Li,Min Ye,Kangping Gao,Xinxin Xu,Meng Wei,Shengjie Jiao
出处
期刊:International Journal of Energy Research [Wiley]
卷期号:45 (9): 13307-13322 被引量:41
标识
DOI:10.1002/er.6658
摘要

Lithium-ion batteries (LIBs) are widely used in electric vehicles due to its high energy density and low pollution. As the key monitoring parameters of battery management system (BMS), accurate estimation of the state of charge (SOC) and state of health (SOH) can promote the utilization rate of battery, which is of great significance to ensure the safe use of LIBs. In this paper, a novel dual Kalman filter method is proposed to achieve simultaneous SOC and SOH estimation. This paper improves the estimation accuracy of SOC and SOH from the following four aspects. Firstly, the widely used equivalent circuit model is established as the battery model in this paper, and the forgetting factor recursive least squares (FFRLS) method is applied to identify the model parameters. Secondly, two kinds of single-variable battery states are established to analyze the influence of OCV-SOC curve and battery capacity on SOC estimation. Based on this, an error model is proposed combined with Kalman filter to achieve better estimation results of SOC and SOH. Besides, to promote the accuracy of SOC estimation, based on the error innovation sequence (EIS) and residual innovation sequence (RIS), the improved dual adaptive extended Kalman filter (IDAEKF) algorithm based on dynamic window is proposed. Finally, the superiority of the proposed model is verified under different cycles. Experimental results show that the estimation error of SOC and SOH is controlled within 1%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fingerprints完成签到 ,获得积分10
刚刚
1秒前
曹亚伟发布了新的文献求助10
1秒前
1秒前
YAO发布了新的文献求助10
4秒前
chen发布了新的文献求助10
4秒前
bkagyin应助杰bro采纳,获得10
4秒前
1218完成签到 ,获得积分10
7秒前
CC发布了新的文献求助10
7秒前
hongxuezhi完成签到,获得积分10
8秒前
8秒前
wQ1ng应助777采纳,获得10
10秒前
11秒前
clamon完成签到,获得积分10
12秒前
科研通AI5应助雷雷采纳,获得10
12秒前
soss完成签到,获得积分10
13秒前
Ldq发布了新的文献求助10
14秒前
mountainbike完成签到,获得积分10
15秒前
16秒前
菜鸡5号发布了新的文献求助20
17秒前
18秒前
tianyi2347发布了新的文献求助10
19秒前
陈chen发布了新的文献求助10
20秒前
闪闪书桃完成签到,获得积分10
20秒前
科研通AI5应助zzww采纳,获得10
21秒前
28秒前
纯乏完成签到,获得积分10
29秒前
小米发布了新的文献求助10
32秒前
耳东陈完成签到 ,获得积分10
32秒前
小落完成签到 ,获得积分10
33秒前
SciGPT应助HJJHJH采纳,获得10
34秒前
且欣且行完成签到 ,获得积分10
34秒前
雷雷发布了新的文献求助10
34秒前
闪亮的季节完成签到,获得积分10
34秒前
36秒前
38秒前
chen完成签到,获得积分10
39秒前
sam发布了新的文献求助10
39秒前
39秒前
39秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208961
求助须知:如何正确求助?哪些是违规求助? 4386288
关于积分的说明 13660545
捐赠科研通 4245343
什么是DOI,文献DOI怎么找? 2329238
邀请新用户注册赠送积分活动 1327077
关于科研通互助平台的介绍 1279355