Joint estimation of state of charge and state of health for lithium‐ion battery based on dual adaptive extended Kalman filter

荷电状态 卡尔曼滤波器 扩展卡尔曼滤波器 电池(电) 健康状况 递归最小平方滤波器 控制理论(社会学) 残余物 锂离子电池 计算机科学 工程类 算法 自适应滤波器 功率(物理) 人工智能 物理 控制(管理) 量子力学
作者
Jiabo Li,Min Ye,Kangping Gao,Xinxin Xu,Meng Wei,Shengjie Jiao
出处
期刊:International Journal of Energy Research [Wiley]
卷期号:45 (9): 13307-13322 被引量:41
标识
DOI:10.1002/er.6658
摘要

Lithium-ion batteries (LIBs) are widely used in electric vehicles due to its high energy density and low pollution. As the key monitoring parameters of battery management system (BMS), accurate estimation of the state of charge (SOC) and state of health (SOH) can promote the utilization rate of battery, which is of great significance to ensure the safe use of LIBs. In this paper, a novel dual Kalman filter method is proposed to achieve simultaneous SOC and SOH estimation. This paper improves the estimation accuracy of SOC and SOH from the following four aspects. Firstly, the widely used equivalent circuit model is established as the battery model in this paper, and the forgetting factor recursive least squares (FFRLS) method is applied to identify the model parameters. Secondly, two kinds of single-variable battery states are established to analyze the influence of OCV-SOC curve and battery capacity on SOC estimation. Based on this, an error model is proposed combined with Kalman filter to achieve better estimation results of SOC and SOH. Besides, to promote the accuracy of SOC estimation, based on the error innovation sequence (EIS) and residual innovation sequence (RIS), the improved dual adaptive extended Kalman filter (IDAEKF) algorithm based on dynamic window is proposed. Finally, the superiority of the proposed model is verified under different cycles. Experimental results show that the estimation error of SOC and SOH is controlled within 1%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
小郗完成签到,获得积分10
1秒前
2秒前
2秒前
变形金刚完成签到,获得积分10
2秒前
风风完成签到,获得积分10
3秒前
3秒前
5秒前
哇卡哇卡酱完成签到,获得积分10
5秒前
超级元以发布了新的文献求助10
5秒前
anyelengxin发布了新的文献求助10
6秒前
He发布了新的文献求助10
6秒前
林兰特发布了新的文献求助30
6秒前
微垣完成签到,获得积分10
7秒前
7秒前
淡定的鱼发布了新的文献求助30
7秒前
ke发布了新的文献求助10
8秒前
且是天下发布了新的文献求助10
8秒前
CMUSK完成签到 ,获得积分10
8秒前
陈晚拧完成签到 ,获得积分10
9秒前
11秒前
11秒前
12秒前
四玖玖发布了新的文献求助10
12秒前
13秒前
Akim应助诚心晓露采纳,获得10
15秒前
上官若男应助超级元以采纳,获得10
15秒前
果果发布了新的文献求助10
17秒前
17秒前
17秒前
lss完成签到,获得积分10
18秒前
18秒前
LZY完成签到,获得积分10
18秒前
野生菜狗发布了新的文献求助10
18秒前
Trin完成签到,获得积分10
18秒前
19秒前
Jojo完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Lectures in probability theory and mathematical statistics - 3rd Edition 500
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5597377
求助须知:如何正确求助?哪些是违规求助? 4682662
关于积分的说明 14826870
捐赠科研通 4660371
什么是DOI,文献DOI怎么找? 2536535
邀请新用户注册赠送积分活动 1504192
关于科研通互助平台的介绍 1470182