希尔伯特-黄变换
粒子群优化
振动
模式识别(心理学)
关联维数
熵(时间箭头)
方位(导航)
断层(地质)
特征提取
人工智能
计算机科学
算法
数学
白噪声
分形维数
声学
物理
分形
数学分析
地震学
地质学
电信
量子力学
作者
Shuzhi Gao,Quan Wang,Yimin Zhang
出处
期刊:IEEE Transactions on Instrumentation and Measurement
[Institute of Electrical and Electronics Engineers]
日期:2021-01-01
卷期号:70: 1-8
被引量:44
标识
DOI:10.1109/tim.2021.3072138
摘要
Considering the nonlinear and nonstationary characteristics of rolling bearing vibration signals, we propose a rolling bearing fault diagnosis method based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), refined composite multiscale fuzzy entropy (RCMFE), Laplace score (LS), and the particle swarm optimization-probabilistic neural network (PSO-PNN). First, the method employs CEEMDAN to decompose the vibration signal and select the intrinsic mode functions (IMFs) containing the primary fault information via the frequency-domain correlation coefficient method. Then, it uses RCMFE to extract the characteristic information from the selected IMF. In addition, it uses LS to select and construct low-dimensional sensitive feature vectors, which are incorporated into the PSO-PNN model for diagnostic analysis to realize the state recognition of rolling bearing. Finally, the effectiveness of the method is verified by the analysis of the experimental data.
科研通智能强力驱动
Strongly Powered by AbleSci AI