FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks

计算机科学 水准点(测量) 人工智能 图形 人工神经网络 机器学习 理论计算机科学 地理 大地测量学
作者
Chaoyang He,Keshav Balasubramanian,Emir Ceyani,Yu Rong,Peilin Zhao,Junzhou Huang,Murali Annavaram,Salman Avestimehr
出处
期刊:Cornell University - arXiv 被引量:89
标识
DOI:10.48550/arxiv.2104.07145
摘要

Graph Neural Network (GNN) research is rapidly growing thanks to the capacity of GNNs in learning distributed representations from graph-structured data. However, centralizing a massive amount of real-world graph data for GNN training is prohibitive due to privacy concerns, regulation restrictions, and commercial competitions. Federated learning (FL), a trending distributed learning paradigm, provides possibilities to solve this challenge while preserving data privacy. Despite recent advances in vision and language domains, there is no suitable platform for the FL of GNNs. To this end, we introduce FedGraphNN, an open FL benchmark system that can facilitate research on federated GNNs. FedGraphNN is built on a unified formulation of graph FL and contains a wide range of datasets from different domains, popular GNN models, and FL algorithms, with secure and efficient system support. Particularly for the datasets, we collect, preprocess, and partition 36 datasets from 7 domains, including both publicly available ones and specifically obtained ones such as hERG and Tencent. Our empirical analysis showcases the utility of our benchmark system, while exposing significant challenges in graph FL: federated GNNs perform worse in most datasets with a non-IID split than centralized GNNs; the GNN model that attains the best result in the centralized setting may not maintain its advantage in the FL setting. These results imply that more research efforts are needed to unravel the mystery behind federated GNNs. Moreover, our system performance analysis demonstrates that the FedGraphNN system is computationally efficient and secure to large-scale graphs datasets. We maintain the source code at https://github.com/FedML-AI/FedGraphNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助ceo采纳,获得10
刚刚
樱悼柳雪完成签到,获得积分10
刚刚
1秒前
药化民工发布了新的文献求助10
1秒前
毛子涵发布了新的文献求助10
1秒前
duoduo完成签到,获得积分10
1秒前
2秒前
小鱼儿发布了新的文献求助10
2秒前
Betty发布了新的文献求助10
2秒前
Dean应助干饭搞科研采纳,获得30
3秒前
3秒前
3秒前
jie酱拌面应助BeiBei采纳,获得10
3秒前
4秒前
坤坤发布了新的文献求助10
4秒前
iW发布了新的文献求助10
4秒前
小蘑菇应助achris采纳,获得10
5秒前
5秒前
5秒前
二手空气应助Rjy采纳,获得10
6秒前
Yuan88发布了新的文献求助10
6秒前
6秒前
6秒前
bkagyin应助稳重的秋天采纳,获得10
7秒前
7秒前
Quirinus完成签到,获得积分20
7秒前
毛子涵完成签到,获得积分10
7秒前
8秒前
8秒前
贪玩元晴发布了新的文献求助10
8秒前
我是老大应助多情方盒采纳,获得30
8秒前
桐桐应助blablawindy采纳,获得10
8秒前
8秒前
9秒前
9秒前
10秒前
10秒前
小蘑菇应助Ting222采纳,获得10
10秒前
10秒前
欧大大完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576795
求助须知:如何正确求助?哪些是违规求助? 3995951
关于积分的说明 12370915
捐赠科研通 3670012
什么是DOI,文献DOI怎么找? 2022527
邀请新用户注册赠送积分活动 1056628
科研通“疑难数据库(出版商)”最低求助积分说明 943794