已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks

计算机科学 水准点(测量) 人工智能 图形 人工神经网络 机器学习 理论计算机科学 地理 大地测量学
作者
Chaoyang He,Keshav Balasubramanian,Emir Ceyani,Yu Rong,Peilin Zhao,Junzhou Huang,Murali Annavaram,Salman Avestimehr
出处
期刊:Cornell University - arXiv 被引量:89
标识
DOI:10.48550/arxiv.2104.07145
摘要

Graph Neural Network (GNN) research is rapidly growing thanks to the capacity of GNNs in learning distributed representations from graph-structured data. However, centralizing a massive amount of real-world graph data for GNN training is prohibitive due to privacy concerns, regulation restrictions, and commercial competitions. Federated learning (FL), a trending distributed learning paradigm, provides possibilities to solve this challenge while preserving data privacy. Despite recent advances in vision and language domains, there is no suitable platform for the FL of GNNs. To this end, we introduce FedGraphNN, an open FL benchmark system that can facilitate research on federated GNNs. FedGraphNN is built on a unified formulation of graph FL and contains a wide range of datasets from different domains, popular GNN models, and FL algorithms, with secure and efficient system support. Particularly for the datasets, we collect, preprocess, and partition 36 datasets from 7 domains, including both publicly available ones and specifically obtained ones such as hERG and Tencent. Our empirical analysis showcases the utility of our benchmark system, while exposing significant challenges in graph FL: federated GNNs perform worse in most datasets with a non-IID split than centralized GNNs; the GNN model that attains the best result in the centralized setting may not maintain its advantage in the FL setting. These results imply that more research efforts are needed to unravel the mystery behind federated GNNs. Moreover, our system performance analysis demonstrates that the FedGraphNN system is computationally efficient and secure to large-scale graphs datasets. We maintain the source code at https://github.com/FedML-AI/FedGraphNN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高屋建瓴完成签到,获得积分10
刚刚
无花果应助momi采纳,获得50
2秒前
菜芽君完成签到,获得积分10
3秒前
爆米花应助leslie采纳,获得10
8秒前
wanci应助leslie采纳,获得10
8秒前
科研通AI6应助leslie采纳,获得10
8秒前
WhiteCaramel完成签到 ,获得积分10
9秒前
爱听歌的火火完成签到,获得积分20
11秒前
小栗子完成签到,获得积分10
13秒前
15秒前
徐biao发布了新的文献求助20
15秒前
鹿小新发布了新的文献求助10
19秒前
jyy完成签到,获得积分10
20秒前
蛙蛙完成签到,获得积分10
21秒前
华仔应助徐biao采纳,获得10
29秒前
绮烟完成签到 ,获得积分10
30秒前
31秒前
酷酷以柳完成签到,获得积分10
32秒前
Criminology34举报无风求助涉嫌违规
33秒前
月儿完成签到 ,获得积分10
41秒前
43秒前
45秒前
51秒前
阳阳完成签到,获得积分10
53秒前
moiumuio完成签到,获得积分10
54秒前
55秒前
郝誉发布了新的文献求助10
56秒前
cenghao发布了新的文献求助10
56秒前
圈哥完成签到 ,获得积分10
56秒前
香樟沐雪完成签到 ,获得积分10
57秒前
one应助Fionn采纳,获得10
58秒前
斯文败类应助科研通管家采纳,获得10
59秒前
思源应助科研通管家采纳,获得10
59秒前
无极微光应助科研通管家采纳,获得20
59秒前
科研通AI6应助科研通管家采纳,获得10
59秒前
BowieHuang应助科研通管家采纳,获得10
59秒前
59秒前
59秒前
VDC发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590260
求助须知:如何正确求助?哪些是违规求助? 4674687
关于积分的说明 14795015
捐赠科研通 4631029
什么是DOI,文献DOI怎么找? 2532659
邀请新用户注册赠送积分活动 1501235
关于科研通互助平台的介绍 1468581