亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks

计算机科学 水准点(测量) 人工智能 图形 人工神经网络 机器学习 理论计算机科学 地理 大地测量学
作者
Chaoyang He,Keshav Balasubramanian,Emir Ceyani,Yu Rong,Peilin Zhao,Junzhou Huang,Murali Annavaram,Salman Avestimehr
出处
期刊:Cornell University - arXiv 被引量:89
标识
DOI:10.48550/arxiv.2104.07145
摘要

Graph Neural Network (GNN) research is rapidly growing thanks to the capacity of GNNs in learning distributed representations from graph-structured data. However, centralizing a massive amount of real-world graph data for GNN training is prohibitive due to privacy concerns, regulation restrictions, and commercial competitions. Federated learning (FL), a trending distributed learning paradigm, provides possibilities to solve this challenge while preserving data privacy. Despite recent advances in vision and language domains, there is no suitable platform for the FL of GNNs. To this end, we introduce FedGraphNN, an open FL benchmark system that can facilitate research on federated GNNs. FedGraphNN is built on a unified formulation of graph FL and contains a wide range of datasets from different domains, popular GNN models, and FL algorithms, with secure and efficient system support. Particularly for the datasets, we collect, preprocess, and partition 36 datasets from 7 domains, including both publicly available ones and specifically obtained ones such as hERG and Tencent. Our empirical analysis showcases the utility of our benchmark system, while exposing significant challenges in graph FL: federated GNNs perform worse in most datasets with a non-IID split than centralized GNNs; the GNN model that attains the best result in the centralized setting may not maintain its advantage in the FL setting. These results imply that more research efforts are needed to unravel the mystery behind federated GNNs. Moreover, our system performance analysis demonstrates that the FedGraphNN system is computationally efficient and secure to large-scale graphs datasets. We maintain the source code at https://github.com/FedML-AI/FedGraphNN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Marciu33完成签到,获得积分10
11秒前
16秒前
量子星尘发布了新的文献求助10
22秒前
溜溜发布了新的文献求助10
34秒前
37秒前
40秒前
Akim应助溜溜采纳,获得10
43秒前
ZTK发布了新的文献求助20
45秒前
55秒前
ZTK完成签到,获得积分10
57秒前
小二郎应助科研通管家采纳,获得10
1分钟前
1分钟前
Suzanne完成签到,获得积分10
1分钟前
1分钟前
幽默棒球发布了新的文献求助10
2分钟前
2分钟前
2分钟前
打打应助兴奋的菠萝采纳,获得10
2分钟前
溜溜发布了新的文献求助10
2分钟前
香蕉觅云应助koubi采纳,获得10
2分钟前
wanci应助白华苍松采纳,获得10
2分钟前
笨笨的怜雪完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
迷途小书童应助徐甜采纳,获得10
2分钟前
2分钟前
ding应助Marciu33采纳,获得10
2分钟前
2分钟前
2分钟前
清浅完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
Jasper应助跳跃的冰淇淋采纳,获得10
2分钟前
21145077发布了新的文献求助10
2分钟前
3分钟前
koubi完成签到,获得积分20
3分钟前
koubi发布了新的文献求助10
3分钟前
Lucas应助21145077采纳,获得10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509593
求助须知:如何正确求助?哪些是违规求助? 4604436
关于积分的说明 14489773
捐赠科研通 4539232
什么是DOI,文献DOI怎么找? 2487386
邀请新用户注册赠送积分活动 1469853
关于科研通互助平台的介绍 1442062