FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks

计算机科学 水准点(测量) 人工智能 图形 人工神经网络 机器学习 理论计算机科学 地理 大地测量学
作者
Chaoyang He,Keshav Balasubramanian,Emir Ceyani,Yu Rong,Peilin Zhao,Junzhou Huang,Murali Annavaram,Salman Avestimehr
出处
期刊:Cornell University - arXiv 被引量:89
标识
DOI:10.48550/arxiv.2104.07145
摘要

Graph Neural Network (GNN) research is rapidly growing thanks to the capacity of GNNs in learning distributed representations from graph-structured data. However, centralizing a massive amount of real-world graph data for GNN training is prohibitive due to privacy concerns, regulation restrictions, and commercial competitions. Federated learning (FL), a trending distributed learning paradigm, provides possibilities to solve this challenge while preserving data privacy. Despite recent advances in vision and language domains, there is no suitable platform for the FL of GNNs. To this end, we introduce FedGraphNN, an open FL benchmark system that can facilitate research on federated GNNs. FedGraphNN is built on a unified formulation of graph FL and contains a wide range of datasets from different domains, popular GNN models, and FL algorithms, with secure and efficient system support. Particularly for the datasets, we collect, preprocess, and partition 36 datasets from 7 domains, including both publicly available ones and specifically obtained ones such as hERG and Tencent. Our empirical analysis showcases the utility of our benchmark system, while exposing significant challenges in graph FL: federated GNNs perform worse in most datasets with a non-IID split than centralized GNNs; the GNN model that attains the best result in the centralized setting may not maintain its advantage in the FL setting. These results imply that more research efforts are needed to unravel the mystery behind federated GNNs. Moreover, our system performance analysis demonstrates that the FedGraphNN system is computationally efficient and secure to large-scale graphs datasets. We maintain the source code at https://github.com/FedML-AI/FedGraphNN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘海清完成签到,获得积分10
刚刚
刚刚
研友_ndka5L发布了新的文献求助10
刚刚
1秒前
QQQ完成签到,获得积分10
1秒前
Shannon完成签到,获得积分10
1秒前
xinxin完成签到,获得积分10
1秒前
1秒前
1秒前
aobadong完成签到,获得积分10
2秒前
2秒前
2秒前
小小油应助葵花籽采纳,获得30
2秒前
3秒前
Hello应助毛脸雷公嘴采纳,获得10
3秒前
3秒前
3秒前
3秒前
4秒前
lalala完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助20
4秒前
5秒前
5秒前
濛嘻嘻完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
非霏的顿河完成签到,获得积分10
6秒前
繁荣的紫完成签到,获得积分20
6秒前
啦啦啦完成签到,获得积分10
6秒前
白瑾完成签到,获得积分10
6秒前
希望天下0贩的0应助LJ采纳,获得10
7秒前
七月完成签到,获得积分20
8秒前
李健应助prove采纳,获得10
8秒前
高端完成签到,获得积分10
8秒前
聪慧鸡翅发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
原始人发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609460
求助须知:如何正确求助?哪些是违规求助? 4694074
关于积分的说明 14880935
捐赠科研通 4719643
什么是DOI,文献DOI怎么找? 2544750
邀请新用户注册赠送积分活动 1509658
关于科研通互助平台的介绍 1472950