FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks

计算机科学 水准点(测量) 人工智能 图形 人工神经网络 机器学习 理论计算机科学 地理 大地测量学
作者
Chaoyang He,Keshav Balasubramanian,Emir Ceyani,Yu Rong,Peilin Zhao,Junzhou Huang,Murali Annavaram,Salman Avestimehr
出处
期刊:Cornell University - arXiv 被引量:89
标识
DOI:10.48550/arxiv.2104.07145
摘要

Graph Neural Network (GNN) research is rapidly growing thanks to the capacity of GNNs in learning distributed representations from graph-structured data. However, centralizing a massive amount of real-world graph data for GNN training is prohibitive due to privacy concerns, regulation restrictions, and commercial competitions. Federated learning (FL), a trending distributed learning paradigm, provides possibilities to solve this challenge while preserving data privacy. Despite recent advances in vision and language domains, there is no suitable platform for the FL of GNNs. To this end, we introduce FedGraphNN, an open FL benchmark system that can facilitate research on federated GNNs. FedGraphNN is built on a unified formulation of graph FL and contains a wide range of datasets from different domains, popular GNN models, and FL algorithms, with secure and efficient system support. Particularly for the datasets, we collect, preprocess, and partition 36 datasets from 7 domains, including both publicly available ones and specifically obtained ones such as hERG and Tencent. Our empirical analysis showcases the utility of our benchmark system, while exposing significant challenges in graph FL: federated GNNs perform worse in most datasets with a non-IID split than centralized GNNs; the GNN model that attains the best result in the centralized setting may not maintain its advantage in the FL setting. These results imply that more research efforts are needed to unravel the mystery behind federated GNNs. Moreover, our system performance analysis demonstrates that the FedGraphNN system is computationally efficient and secure to large-scale graphs datasets. We maintain the source code at https://github.com/FedML-AI/FedGraphNN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十五完成签到,获得积分10
刚刚
可爱的函函应助Richard采纳,获得10
1秒前
oneonlycrown完成签到,获得积分10
2秒前
感谢大家发布了新的文献求助10
2秒前
2秒前
FashionBoy应助破碎的试剂采纳,获得10
3秒前
水123发布了新的文献求助10
3秒前
4秒前
jinxing完成签到,获得积分10
4秒前
王涵秋发布了新的文献求助10
4秒前
cici完成签到 ,获得积分10
4秒前
4秒前
5秒前
liquor完成签到,获得积分10
5秒前
6秒前
完美世界应助711采纳,获得10
8秒前
克里斯蒂龙完成签到,获得积分20
8秒前
无极微光应助fireflieszy采纳,获得20
8秒前
海德堡发布了新的文献求助10
8秒前
lbl完成签到,获得积分10
9秒前
棉花糖完成签到 ,获得积分10
9秒前
10秒前
一一应助感谢大家采纳,获得10
10秒前
perchasing完成签到,获得积分10
10秒前
12秒前
llly完成签到,获得积分10
13秒前
隐形曼青应助王涵秋采纳,获得10
13秒前
niNe3YUE应助菜菜酱爱火锅采纳,获得10
14秒前
14秒前
fengfeng完成签到,获得积分20
15秒前
HGUYG发布了新的文献求助10
16秒前
16秒前
17秒前
mucheng发布了新的文献求助10
18秒前
大龙哥886应助虚拟的怀绿采纳,获得10
18秒前
711发布了新的文献求助10
19秒前
chenzhi发布了新的文献求助10
20秒前
20秒前
Bobi完成签到 ,获得积分10
20秒前
wsqg123完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603942
求助须知:如何正确求助?哪些是违规求助? 4688789
关于积分的说明 14856201
捐赠科研通 4695596
什么是DOI,文献DOI怎么找? 2541056
邀请新用户注册赠送积分活动 1507200
关于科研通互助平台的介绍 1471832