FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks

计算机科学 水准点(测量) 人工智能 图形 人工神经网络 机器学习 理论计算机科学 地理 大地测量学
作者
Chaoyang He,Keshav Balasubramanian,Emir Ceyani,Yu Rong,Peilin Zhao,Junzhou Huang,Murali Annavaram,Salman Avestimehr
出处
期刊:Cornell University - arXiv 被引量:89
标识
DOI:10.48550/arxiv.2104.07145
摘要

Graph Neural Network (GNN) research is rapidly growing thanks to the capacity of GNNs in learning distributed representations from graph-structured data. However, centralizing a massive amount of real-world graph data for GNN training is prohibitive due to privacy concerns, regulation restrictions, and commercial competitions. Federated learning (FL), a trending distributed learning paradigm, provides possibilities to solve this challenge while preserving data privacy. Despite recent advances in vision and language domains, there is no suitable platform for the FL of GNNs. To this end, we introduce FedGraphNN, an open FL benchmark system that can facilitate research on federated GNNs. FedGraphNN is built on a unified formulation of graph FL and contains a wide range of datasets from different domains, popular GNN models, and FL algorithms, with secure and efficient system support. Particularly for the datasets, we collect, preprocess, and partition 36 datasets from 7 domains, including both publicly available ones and specifically obtained ones such as hERG and Tencent. Our empirical analysis showcases the utility of our benchmark system, while exposing significant challenges in graph FL: federated GNNs perform worse in most datasets with a non-IID split than centralized GNNs; the GNN model that attains the best result in the centralized setting may not maintain its advantage in the FL setting. These results imply that more research efforts are needed to unravel the mystery behind federated GNNs. Moreover, our system performance analysis demonstrates that the FedGraphNN system is computationally efficient and secure to large-scale graphs datasets. We maintain the source code at https://github.com/FedML-AI/FedGraphNN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
薇子完成签到,获得积分10
刚刚
刚刚
刚刚
情怀应助能干耳机采纳,获得10
1秒前
CodeCraft应助wyiii采纳,获得10
1秒前
dd完成签到,获得积分10
1秒前
晏之傲者发布了新的文献求助30
1秒前
1秒前
Hina完成签到,获得积分10
1秒前
2秒前
2秒前
JokerCing完成签到,获得积分10
2秒前
wkjfh应助1111111111111采纳,获得10
2秒前
山水完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
ytnju发布了新的文献求助10
4秒前
林非鹿发布了新的文献求助10
5秒前
orixero应助天空之城采纳,获得10
5秒前
璇璇完成签到,获得积分10
5秒前
hr发布了新的文献求助10
5秒前
浮游应助Lx采纳,获得10
5秒前
5秒前
xyg发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
龙猫发布了新的文献求助10
6秒前
6秒前
平常的惜天完成签到,获得积分10
6秒前
叶寻发布了新的文献求助30
6秒前
destiny发布了新的文献求助10
7秒前
zml发布了新的文献求助10
7秒前
余真谛发布了新的文献求助10
8秒前
8秒前
8秒前
李爱国应助暴躁de晶采纳,获得30
8秒前
8秒前
8秒前
缪欣桐发布了新的文献求助10
8秒前
YSY完成签到,获得积分10
9秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619329
求助须知:如何正确求助?哪些是违规求助? 4704120
关于积分的说明 14925930
捐赠科研通 4759609
什么是DOI,文献DOI怎么找? 2550538
邀请新用户注册赠送积分活动 1513291
关于科研通互助平台的介绍 1474401