亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The Mining of Urban Hotspots Based on Multi-source Location Data Fusion

计算机科学 数据挖掘 聚类分析 传感器融合 多源 数据集 热点(地质) 人工智能 数学 地球物理学 统计 地质学
作者
Li Cai,Haoyu Wang,Cong Sha,Fang Jiang,Yihang Zhang,Wei Zhou
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tkde.2021.3109581
摘要

Urban hotspots reflect the degree of residents' travel gathering. The study of urban hotspots has important values for urban infrastructure planning, public security and other aspects. In existing researches, single-source location data and density-based clustering algorithms are used to mine hotspots. Due to the one-sidedness of using the single-source data, the mining of hotspots based on multi-source location data fusion has become a hot topic. Multi-source location data fusion requires a quantity balance between the data sets to be fused, because several famous clustering algorithms cannot handle multi-source imbalanced data sets. To solve this problem, we propose a novel framework to mine urban hotspots. First, we construct a data imputation model for the sparse data set so that reducing the difference in quantity between two types of data sets. Then, a clustering algorithm for imbalanced data sets is proposed, and a novel evaluation metric is designed to verify the effectiveness of clustering results. The experiment uses real data sets including POI data, check-in data and GPS trajectory data. The results show that the proposed method discovers all urban hotspots formed by fused imbalanced data sets, and it is more accurate and efficient than the state-of-the-art algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
豆都发布了新的文献求助10
1秒前
务实书包完成签到,获得积分10
1秒前
徐志豪发布了新的文献求助10
3秒前
zorro3574发布了新的文献求助10
4秒前
9秒前
zorro3574完成签到,获得积分10
12秒前
木有完成签到 ,获得积分10
13秒前
15秒前
爆米花应助豆都采纳,获得10
16秒前
18秒前
maoaq完成签到 ,获得积分10
21秒前
23秒前
21145077发布了新的文献求助10
28秒前
30秒前
31秒前
babao发布了新的文献求助30
33秒前
无题完成签到,获得积分10
36秒前
36秒前
研友_VZG7GZ应助青柠采纳,获得10
40秒前
babao完成签到,获得积分20
42秒前
Mmmmmmm发布了新的文献求助30
42秒前
45秒前
51秒前
DD完成签到 ,获得积分10
54秒前
1分钟前
1分钟前
我是老大应助李桂芳采纳,获得10
1分钟前
浮浮世世应助科研通管家采纳,获得30
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
英俊的铭应助科研通管家采纳,获得20
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
1分钟前
压缩完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493801
求助须知:如何正确求助?哪些是违规求助? 4591808
关于积分的说明 14434688
捐赠科研通 4524200
什么是DOI,文献DOI怎么找? 2478731
邀请新用户注册赠送积分活动 1463717
关于科研通互助平台的介绍 1436490