清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

The Mining of Urban Hotspots Based on Multi-source Location Data Fusion

计算机科学 数据挖掘 聚类分析 传感器融合 多源 数据集 热点(地质) 人工智能 数学 地球物理学 统计 地质学
作者
Li Cai,Haoyu Wang,Cong Sha,Fang Jiang,Yihang Zhang,Wei Zhou
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tkde.2021.3109581
摘要

Urban hotspots reflect the degree of residents' travel gathering. The study of urban hotspots has important values for urban infrastructure planning, public security and other aspects. In existing researches, single-source location data and density-based clustering algorithms are used to mine hotspots. Due to the one-sidedness of using the single-source data, the mining of hotspots based on multi-source location data fusion has become a hot topic. Multi-source location data fusion requires a quantity balance between the data sets to be fused, because several famous clustering algorithms cannot handle multi-source imbalanced data sets. To solve this problem, we propose a novel framework to mine urban hotspots. First, we construct a data imputation model for the sparse data set so that reducing the difference in quantity between two types of data sets. Then, a clustering algorithm for imbalanced data sets is proposed, and a novel evaluation metric is designed to verify the effectiveness of clustering results. The experiment uses real data sets including POI data, check-in data and GPS trajectory data. The results show that the proposed method discovers all urban hotspots formed by fused imbalanced data sets, and it is more accurate and efficient than the state-of-the-art algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助liu采纳,获得10
1秒前
lwtsy发布了新的文献求助10
4秒前
6秒前
量子星尘发布了新的文献求助10
10秒前
CodeCraft应助George采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
脑洞疼应助科研通管家采纳,获得10
32秒前
逸风望完成签到,获得积分10
33秒前
合不着完成签到 ,获得积分10
38秒前
lwtsy完成签到,获得积分10
42秒前
52秒前
George发布了新的文献求助10
56秒前
llll完成签到 ,获得积分0
56秒前
无花果应助Developing_human采纳,获得10
1分钟前
1分钟前
笔墨纸砚完成签到 ,获得积分10
1分钟前
1分钟前
汉堡包应助酷酷的大米采纳,获得10
1分钟前
酷酷的大米完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
sweet完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得20
2分钟前
和谐的夏岚完成签到 ,获得积分10
3分钟前
Paris完成签到 ,获得积分10
3分钟前
凤迎雪飘完成签到,获得积分10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
天天快乐应助Developing_human采纳,获得10
4分钟前
5分钟前
liu发布了新的文献求助10
5分钟前
郭强完成签到 ,获得积分10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664563
求助须知:如何正确求助?哪些是违规求助? 4865032
关于积分的说明 15108031
捐赠科研通 4823202
什么是DOI,文献DOI怎么找? 2582042
邀请新用户注册赠送积分活动 1536153
关于科研通互助平台的介绍 1494545