Deep Learning in Security of Internet of Things

计算机科学 计算机安全 边缘计算 建筑 入侵检测系统 互联网 脆弱性(计算) 智能电网 物联网 万维网 工程类 电气工程 艺术 视觉艺术
作者
Yuxi Li,Yue Zuo,Houbing Song,Zhihan Lv
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (22): 22133-22146 被引量:102
标识
DOI:10.1109/jiot.2021.3106898
摘要

Internet-of-Things (IoT) technology is increasingly prominent in the current stage of social development. All walks of life have begun to implement the IoT integration technology, so as to strive to promote industrial modernization, intelligence, and digitalization. In this case, how to link high-risk network activities with entities has become the primary issue for promoting industrial development. However, at this stage, the security issues in the development of the IoT technology have contradictions that are difficult to resolve. According to this situation, how to make system defense intelligent and replace manual monitoring has become the future of the development of security architecture. This article combines existing security research to explore the possibility of deep learning (DL) in upgrading the IoT security architecture, discusses how the IoT can identify and respond to cyber attacks, and how to encrypt edge data transmission. Moreover, this article discusses security research in application fields, such as Industrial IoT, Internet of Vehicles, smart grid, smart home, and smart medical. Then, we summarized the areas that can be improved in future technological development, including sharing computing power through the edge network processing unit (NPU) central device and closely combining the environmental simulation model with the actual environment, as well as malicious code detection, intrusion detection, production safety, vulnerability detection, fault diagnosis, and blockchain technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
坚定服饰完成签到 ,获得积分10
4秒前
李健的粉丝团团长应助mll采纳,获得10
4秒前
调皮的友儿完成签到,获得积分10
4秒前
suz完成签到,获得积分20
5秒前
123发布了新的文献求助10
5秒前
丘比特应助超锅采纳,获得10
5秒前
5秒前
怡然的怜烟应助飲啖茶采纳,获得30
6秒前
完美花生完成签到,获得积分10
6秒前
怡然的怜烟应助hutao采纳,获得30
7秒前
laber应助saturn采纳,获得50
7秒前
王艳茹发布了新的文献求助10
8秒前
SciGPT应助郭晓萌采纳,获得10
8秒前
一定毕业的我完成签到,获得积分20
8秒前
Yolo发布了新的文献求助10
9秒前
江小米发布了新的文献求助10
10秒前
小慧发布了新的文献求助10
11秒前
11秒前
李健应助神明采纳,获得10
13秒前
14秒前
14秒前
Hello应助令狐擎宇采纳,获得10
14秒前
科研通AI6应助哈哈哈采纳,获得10
15秒前
16秒前
若花若草完成签到,获得积分10
16秒前
16秒前
独特觅儿完成签到,获得积分10
17秒前
yy完成签到 ,获得积分10
17秒前
追风完成签到,获得积分20
17秒前
18秒前
科研通AI6应助王手采纳,获得10
18秒前
18秒前
18秒前
共享精神应助Yolo采纳,获得10
19秒前
千日粉发布了新的文献求助10
19秒前
LC完成签到 ,获得积分10
20秒前
wuhu完成签到 ,获得积分10
20秒前
saturn完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462518
求助须知:如何正确求助?哪些是违规求助? 4567225
关于积分的说明 14309649
捐赠科研通 4493103
什么是DOI,文献DOI怎么找? 2461427
邀请新用户注册赠送积分活动 1450522
关于科研通互助平台的介绍 1425854