计算机科学
稳健性(进化)
MNIST数据库
异步通信
星座
近地轨道
卫星
趋同(经济学)
推论
人工智能
深度学习
机器学习
电信
航空航天工程
基因
物理
工程类
生物化学
经济
化学
经济增长
天文
作者
Nasrin Razmi,Bho Matthiesen,Armin Dekorsy,Petar Popovski
出处
期刊:IEEE Wireless Communications Letters
[Institute of Electrical and Electronics Engineers]
日期:2022-01-07
卷期号:11 (4): 717-721
被引量:67
标识
DOI:10.1109/lwc.2022.3141120
摘要
In Low Earth Orbit (LEO) mega constellations, there are relevant use cases, such as inference based on satellite imaging, in which a large number of satellites collaboratively train a machine learning model without sharing their local datasets. To address this problem, we propose a new set of algorithms based on Federated learning (FL), including a novel asynchronous FL procedure based on FedAvg that exhibits better robustness against heterogeneous scenarios than the state-of-the-art. Extensive numerical evaluations based on MNIST and CIFAR-10 datasets highlight the fast convergence speed and excellent asymptotic test accuracy of the proposed method.
科研通智能强力驱动
Strongly Powered by AbleSci AI