材料科学
阳极
碳纳米管
共价键
复合材料
锂(药物)
纳米颗粒
电化学
纳米技术
化学工程
复合数
化学
电极
有机化学
内分泌学
物理化学
工程类
医学
作者
Tianyi Hou,Borui Liu,Xiaohong Sun,Anran Fan,Zhongkai Xu,Shu Cai,Chunming Zheng,Guihua Yu,Antonio Tricoli
出处
期刊:ACS Nano
[American Chemical Society]
日期:2021-03-19
卷期号:15 (4): 6735-6746
被引量:123
标识
DOI:10.1021/acsnano.0c10121
摘要
Transition-metal sulfides (TMSs) powered by conversion and/or alloying reactions are considered to be promising anode materials for advanced lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). However, the limited electronic conductivity and large volume expansion severely hinder their practical application. Herein, we report a covalent coupling strategy for TMS-based anode materials using amide linkages to bind TMSs and carbon nanotubes (CNTs). In the synthesis, the thiourea acts as not only the capping agent for morphology control but also the linking agent for the covalent coupling. As a proof of concept, the covalently coupled ZnS/CNT composite (CC-ZnS/CNT) has been prepared, with ZnS nanoparticles (∼10 nm) tightly anchored on CNT bundles. The compact ZnS-CNT heterojunctions are greatly beneficial to facilitating the electron/ion transfer and ensuring structural stability. Due to the strong coupling interaction between ZnS and CNTs, the composite presents prominent pseudocapacitive behavior and highly reversible electrochemical processes, thus leading to superior long-term stability and excellent rate capability, delivering reversible capacities of 333 mAh g–1 at 2 A g–1 over 4000 cycles for LIBs and 314 mAh g–1 at 5 A g–1 after 500 cycles for SIBs. Consequently, CC-ZnS/CNT exhibits great competence for applications in LIBs and SIBs, and the covalent coupling strategy is proposed as a promising approach for designing high-performance anode materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI