已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Nonlocal graph theory based transductive learning for hyperspectral image classification

高光谱成像 人工智能 模式识别(心理学) 计算机科学 降维 图形 维数之咒 数学 机器学习 理论计算机科学
作者
Baoxiang Huang,Linyao Ge,Ge Chen,Milena Radenkovic,Xiaopeng Wang,Jinming Duan,Pan Zhen-kuan
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:116: 107967-107967 被引量:36
标识
DOI:10.1016/j.patcog.2021.107967
摘要

• The NLM similarity feature with full dimensionality of HSI data is exploited. • A trunsductive variational model with nonlocal sparse graph expression is presented. • A fast transductive alternating minimization iteration algorithm is designed to solve the classification problem. • The classification results exhibit the excellent classification performance of the proposed method. The Overall Flowchart of Transductive Learning Method for HSI Classification using Nonlocal Graph Theory Hyperspectral Image classification plays an important role in the maintenance of remote image analysis, which has been attracting a lot of research interest. Although various approaches, including unsupervised and supervised methods, have been proposed, obtaining a satisfactory classification result is still a challenge. In this paper, an efficient transductive learning method using variational nonlocal graph theory for hyperspectral image classification is proposed. First, the nonlocal vector neighborhood similarity is employed to build sparse graph representation. Then the variational segmentation framework is extended to label space, and the vectorization nonlocal energy function is constructed. Next, a fast comprehensive alternating minimization iteration algorithm is designed to implement labels transductive learning. At the same time, the labeled sample constraints are doubled ensured with simplex projection. Finally, experiments on six widely used hyperspectral image datasets are implemented, compared with other state-of-the-art classification methods, the classification results demonstrate that the proposed method has higher classification performance. Benefiting from graph theory and transductive idea, the proposed classification method can propagate labels and overcome the very high dimensionality and limited labeling problem to some extent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ryen发布了新的文献求助10
1秒前
沙漠完成签到,获得积分10
2秒前
2秒前
fduqyy发布了新的文献求助30
2秒前
科研通AI5应助cstjx采纳,获得10
4秒前
爱吃香菜完成签到 ,获得积分10
5秒前
花生完成签到 ,获得积分10
6秒前
杨e发布了新的文献求助10
7秒前
万姒完成签到,获得积分10
7秒前
科研通AI5应助yuaasusanaann采纳,获得10
9秒前
爆米花应助wangjue采纳,获得10
11秒前
12秒前
12秒前
13秒前
SisiZheng发布了新的文献求助10
13秒前
ZHANG_Kun完成签到 ,获得积分10
15秒前
FashionBoy应助dara采纳,获得10
16秒前
深情安青应助HS采纳,获得10
16秒前
浩淼发布了新的文献求助10
17秒前
月下荷花发布了新的文献求助10
17秒前
cstjx发布了新的文献求助10
18秒前
SisiZheng完成签到,获得积分10
19秒前
鱼鱼特穆尔完成签到 ,获得积分10
19秒前
22秒前
wangjue发布了新的文献求助10
25秒前
打打应助浩淼采纳,获得10
26秒前
冷静的莞完成签到 ,获得积分0
27秒前
传奇3应助沙漠采纳,获得10
28秒前
脑洞疼应助Ivia采纳,获得10
28秒前
29秒前
orixero应助琪琪要发SCI采纳,获得20
29秒前
Benjamin完成签到 ,获得积分10
30秒前
py应助一千年以后采纳,获得10
32秒前
朴实子骞完成签到 ,获得积分10
32秒前
35秒前
lllmmmzzz发布了新的文献求助10
36秒前
SciGPT应助小鲸鱼采纳,获得10
37秒前
脑洞疼应助4114采纳,获得10
37秒前
所所应助安和桥采纳,获得10
37秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980457
求助须知:如何正确求助?哪些是违规求助? 3524399
关于积分的说明 11221363
捐赠科研通 3261846
什么是DOI,文献DOI怎么找? 1800921
邀请新用户注册赠送积分活动 879507
科研通“疑难数据库(出版商)”最低求助积分说明 807283