Nonlocal graph theory based transductive learning for hyperspectral image classification

高光谱成像 人工智能 模式识别(心理学) 计算机科学 降维 图形 维数之咒 数学 机器学习 理论计算机科学
作者
Baoxiang Huang,Linyao Ge,Ge Chen,Milena Radenkovic,Xiaopeng Wang,Jinming Duan,Pan Zhen-kuan
出处
期刊:Pattern Recognition [Elsevier]
卷期号:116: 107967-107967 被引量:36
标识
DOI:10.1016/j.patcog.2021.107967
摘要

• The NLM similarity feature with full dimensionality of HSI data is exploited. • A trunsductive variational model with nonlocal sparse graph expression is presented. • A fast transductive alternating minimization iteration algorithm is designed to solve the classification problem. • The classification results exhibit the excellent classification performance of the proposed method. The Overall Flowchart of Transductive Learning Method for HSI Classification using Nonlocal Graph Theory Hyperspectral Image classification plays an important role in the maintenance of remote image analysis, which has been attracting a lot of research interest. Although various approaches, including unsupervised and supervised methods, have been proposed, obtaining a satisfactory classification result is still a challenge. In this paper, an efficient transductive learning method using variational nonlocal graph theory for hyperspectral image classification is proposed. First, the nonlocal vector neighborhood similarity is employed to build sparse graph representation. Then the variational segmentation framework is extended to label space, and the vectorization nonlocal energy function is constructed. Next, a fast comprehensive alternating minimization iteration algorithm is designed to implement labels transductive learning. At the same time, the labeled sample constraints are doubled ensured with simplex projection. Finally, experiments on six widely used hyperspectral image datasets are implemented, compared with other state-of-the-art classification methods, the classification results demonstrate that the proposed method has higher classification performance. Benefiting from graph theory and transductive idea, the proposed classification method can propagate labels and overcome the very high dimensionality and limited labeling problem to some extent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助周周采纳,获得10
刚刚
小杨发布了新的文献求助10
1秒前
1秒前
jsy完成签到 ,获得积分10
2秒前
李爱国应助cm2303采纳,获得10
2秒前
飘逸凤完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
蓝不住发布了新的文献求助10
4秒前
健忘书兰完成签到,获得积分10
4秒前
xxxx发布了新的文献求助10
5秒前
兴奋中道发布了新的文献求助10
6秒前
开门啊菇凉完成签到,获得积分0
6秒前
couletian完成签到 ,获得积分10
6秒前
7秒前
阿策发布了新的文献求助30
8秒前
8秒前
cheryl发布了新的文献求助10
9秒前
9秒前
rong108发布了新的文献求助10
9秒前
9秒前
深情安青应助芝麻球ii采纳,获得10
9秒前
9秒前
11秒前
威武的大象完成签到,获得积分10
11秒前
lu完成签到,获得积分10
11秒前
稳重的烙完成签到,获得积分10
11秒前
星语花发布了新的文献求助10
11秒前
小杨完成签到,获得积分10
12秒前
七七完成签到 ,获得积分10
12秒前
林清完成签到,获得积分10
12秒前
12秒前
科研小白发布了新的文献求助10
13秒前
13秒前
14秒前
英俊的铭应助仁爱曼梅采纳,获得10
14秒前
14秒前
所所应助扒开皮皮采纳,获得10
14秒前
14秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257738
求助须知:如何正确求助?哪些是违规求助? 2899561
关于积分的说明 8306743
捐赠科研通 2568802
什么是DOI,文献DOI怎么找? 1395357
科研通“疑难数据库(出版商)”最低求助积分说明 653057
邀请新用户注册赠送积分活动 630837