Nonlocal graph theory based transductive learning for hyperspectral image classification

高光谱成像 人工智能 模式识别(心理学) 计算机科学 降维 图形 维数之咒 数学 机器学习 理论计算机科学
作者
Baoxiang Huang,Linyao Ge,Ge Chen,Milena Radenkovic,Xiaopeng Wang,Jinming Duan,Pan Zhen-kuan
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:116: 107967-107967 被引量:36
标识
DOI:10.1016/j.patcog.2021.107967
摘要

• The NLM similarity feature with full dimensionality of HSI data is exploited. • A trunsductive variational model with nonlocal sparse graph expression is presented. • A fast transductive alternating minimization iteration algorithm is designed to solve the classification problem. • The classification results exhibit the excellent classification performance of the proposed method. The Overall Flowchart of Transductive Learning Method for HSI Classification using Nonlocal Graph Theory Hyperspectral Image classification plays an important role in the maintenance of remote image analysis, which has been attracting a lot of research interest. Although various approaches, including unsupervised and supervised methods, have been proposed, obtaining a satisfactory classification result is still a challenge. In this paper, an efficient transductive learning method using variational nonlocal graph theory for hyperspectral image classification is proposed. First, the nonlocal vector neighborhood similarity is employed to build sparse graph representation. Then the variational segmentation framework is extended to label space, and the vectorization nonlocal energy function is constructed. Next, a fast comprehensive alternating minimization iteration algorithm is designed to implement labels transductive learning. At the same time, the labeled sample constraints are doubled ensured with simplex projection. Finally, experiments on six widely used hyperspectral image datasets are implemented, compared with other state-of-the-art classification methods, the classification results demonstrate that the proposed method has higher classification performance. Benefiting from graph theory and transductive idea, the proposed classification method can propagate labels and overcome the very high dimensionality and limited labeling problem to some extent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
占那个完成签到 ,获得积分10
1秒前
1秒前
louge完成签到,获得积分10
2秒前
科研通AI6应助zzxx采纳,获得10
2秒前
3秒前
旧雨新知完成签到 ,获得积分10
3秒前
4秒前
walu完成签到,获得积分10
4秒前
彩色世倌发布了新的文献求助10
4秒前
Hohaha发布了新的文献求助10
5秒前
6秒前
6秒前
max完成签到,获得积分10
6秒前
快乐旭尧完成签到,获得积分10
9秒前
LXY171发布了新的文献求助20
9秒前
walu发布了新的文献求助20
9秒前
丁浩伦应助小火锅采纳,获得10
9秒前
QQ发布了新的文献求助10
10秒前
Hazel发布了新的文献求助10
12秒前
11111完成签到,获得积分10
12秒前
小蘑菇应助颜林林采纳,获得10
12秒前
小马完成签到,获得积分10
13秒前
顾矜应助科研通管家采纳,获得10
14秒前
不想干活应助科研通管家采纳,获得10
14秒前
赘婿应助科研通管家采纳,获得10
15秒前
不想干活应助科研通管家采纳,获得10
15秒前
无花果应助科研通管家采纳,获得10
15秒前
上官若男应助科研通管家采纳,获得10
15秒前
Zz应助科研通管家采纳,获得10
15秒前
不想干活应助科研通管家采纳,获得10
15秒前
不想干活应助科研通管家采纳,获得30
15秒前
科研通AI6应助madmax采纳,获得30
15秒前
15秒前
不想干活应助科研通管家采纳,获得10
15秒前
星辰大海应助科研通管家采纳,获得10
15秒前
monitor完成签到,获得积分20
15秒前
15秒前
852应助科研通管家采纳,获得10
16秒前
fifteen应助科研通管家采纳,获得10
16秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4548118
求助须知:如何正确求助?哪些是违规求助? 3978952
关于积分的说明 12319973
捐赠科研通 3647538
什么是DOI,文献DOI怎么找? 2008814
邀请新用户注册赠送积分活动 1044272
科研通“疑难数据库(出版商)”最低求助积分说明 932888