声发射
压缩(物理)
地质学
岩土工程
响铃
信号(编程语言)
材料科学
滤波器(信号处理)
复合材料
工程类
计算机科学
电气工程
程序设计语言
作者
Zhandong Su,Ke Geng,Fubiao Zhou,Jinzhong Sun,Huayan Yu
摘要
Understanding the acoustic emission (AE) characteristics of rocks that have undergone freeze‐thaw cycling is of great significance for the use of AE technology to monitor the stability of rock masses in cold regions. A series of freeze‐thaw cycling experiments and triaxial compression AE tests of granite samples were performed. The results show that, with an increasing number of freeze‐thaw cycles, the P‐wave velocity and peak AE intensity of granite show a substantial downward trend. The AE ringing counts during triaxial compression can be divided into three stages: abrupt period, calm period, and failure period. The overall change of the characteristic AE signal of granite samples that underwent different freeze‐thaw cycles is the same. The AE signal during the destruction of granite occurs in clear dual dominant frequency bands. The peak frequency increases with increasing load time, and this trend becomes less clear as the number of freeze‐thaw cycles increases. Overall, the peak frequency distribution tends to change from high to low with an increasing number of freeze‐thaw cycles. The results provide basic data for rock mass stability monitoring and prediction, which is of great significance for engineering construction and management in cold regions.
科研通智能强力驱动
Strongly Powered by AbleSci AI