Anatomy-guided multimodal registration by learning segmentation without ground truth: Application to intraprocedural CBCT/MR liver segmentation and registration

计算机科学 人工智能 分割 图像配准 计算机视觉 基本事实 模态(人机交互) 图像(数学)
作者
Bo Zhou,Zachary Augenfeld,Julius Chapiro,S. Kevin Zhou,Chi Liu,James S. Duncan
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:71: 102041-102041 被引量:45
标识
DOI:10.1016/j.media.2021.102041
摘要

Multimodal image registration has many applications in diagnostic medical imaging and image-guided interventions, such as Transcatheter Arterial Chemoembolization (TACE) of liver cancer guided by intraprocedural CBCT and pre-operative MR. The ability to register peri-procedurally acquired diagnostic images into the intraprocedural environment can potentially improve the intra-procedural tumor targeting, which will significantly improve therapeutic outcomes. However, the intra-procedural CBCT often suffers from suboptimal image quality due to lack of signal calibration for Hounsfield unit, limited FOV, and motion/metal artifacts. These non-ideal conditions make standard intensity-based multimodal registration methods infeasible to generate correct transformation across modalities. While registration based on anatomic structures, such as segmentation or landmarks, provides an efficient alternative, such anatomic structure information is not always available. One can train a deep learning-based anatomy extractor, but it requires large-scale manual annotations on specific modalities, which are often extremely time-consuming to obtain and require expert radiological readers. To tackle these issues, we leverage annotated datasets already existing in a source modality and propose an anatomy-preserving domain adaptation to segmentation network (APA2Seg-Net) for learning segmentation without target modality ground truth. The segmenters are then integrated into our anatomy-guided multimodal registration based on the robust point matching machine. Our experimental results on in-house TACE patient data demonstrated that our APA2Seg-Net can generate robust CBCT and MR liver segmentation, and the anatomy-guided registration framework with these segmenters can provide high-quality multimodal registrations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2020发布了新的文献求助10
刚刚
1秒前
科研通AI5应助文艺怀蝶采纳,获得10
2秒前
斯文败类应助一大碗芋泥采纳,获得10
2秒前
田田发布了新的文献求助30
2秒前
坚定迎天发布了新的文献求助20
4秒前
cdercder应助Schwann翠星石采纳,获得20
5秒前
瘦瘦瘦发布了新的文献求助10
5秒前
6秒前
Lucas应助小七采纳,获得10
8秒前
9秒前
11秒前
11秒前
SYLH应助无奈曼云采纳,获得10
11秒前
13秒前
lingVing瑜发布了新的文献求助10
14秒前
清颜发布了新的文献求助10
15秒前
16秒前
16秒前
17秒前
王耔发布了新的文献求助30
19秒前
20秒前
20秒前
大熊完成签到 ,获得积分10
21秒前
ZONG完成签到,获得积分10
21秒前
霸气阁完成签到,获得积分10
23秒前
daxia完成签到,获得积分10
23秒前
久9完成签到 ,获得积分10
24秒前
111发布了新的文献求助10
25秒前
一大碗芋泥完成签到,获得积分10
26秒前
田様应助junlin采纳,获得10
26秒前
完美世界应助Doris采纳,获得30
27秒前
露亮完成签到,获得积分10
32秒前
含蓄妖丽完成签到 ,获得积分10
32秒前
33秒前
36秒前
露亮发布了新的文献求助10
36秒前
huluobo发布了新的文献求助10
39秒前
星辰大海应助听话的捕采纳,获得10
39秒前
Cyber_relic完成签到,获得积分10
41秒前
高分求助中
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
离子交换膜面电阻的测定方法学 300
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3708002
求助须知:如何正确求助?哪些是违规求助? 3256497
关于积分的说明 9900732
捐赠科研通 2969064
什么是DOI,文献DOI怎么找? 1628311
邀请新用户注册赠送积分活动 772091
科研通“疑难数据库(出版商)”最低求助积分说明 743625