Reduced Gassing In Lithium-Ion Batteries With Organosilicon Additives

电解质 有机硅 锂(药物) 硅烷 碳酸二甲酯 化学 材料科学 无机化学 化学工程 电极 有机化学 甲醇 医学 工程类 内分泌学 物理化学
作者
Sarah Lucienne Guillot,Monica Lee Usrey,A. Pena-Hueso,Brian M Kerber,Zhou Liu,Peng Du,Tobias Johnson
出处
期刊:Journal of The Electrochemical Society [The Electrochemical Society]
卷期号:168 (3): 030533-030533 被引量:23
标识
DOI:10.1149/1945-7111/abed25
摘要

The release of gases through electrolyte decomposition is a problem of prominent concern in the Li-ion battery industry, due to the negative impact of gassing on cell safety and performance. The development of new electrolytes and additives is essential in enabling low-gassing batteries. Organosilicon (OS) molecules, which merge a silane with a Li + coordinating functionality, have been developed by Silatronix® as additions to conventional carbonate electrolytes, demonstrating critical high thermal and voltage stability to enable next-generation Li-ion batteries. In this study we report performance testing and fundamental mechanistic studies to investigate gassing phenomena in advanced Li-ion chemistries under storage test conditions. Novel organosilicon nitriles developed by Silatronix® as well as common gas reducing additives (i.e. 1,3-propanesultone, succinonitrile) were evaluated in a 4.35 V Graphite/NMC622 (LiNi 0.6 Mn 0.2 Co 0.2 O 2 ) multi-layer pouch cell. Potential synergies between OS materials and these additives were investigated. The dependence of gassing on electrolyte composition and test conditions was investigated, and connections between gassing behavior and electrode surface chemistry are also reported. Key experimental results show that all OS concentrations reduce gas generation during 60 °C storage, and higher OS content provides greater benefit. Overall, we show that organosilicon additives substantially reduce gassing from carbonate-based electrolytes while maintaining cell performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助合适的惜筠采纳,获得10
2秒前
深情安青应助等待小刺猬采纳,获得10
2秒前
2秒前
坚果完成签到 ,获得积分10
2秒前
zzz完成签到,获得积分10
3秒前
丘比特应助SongRD采纳,获得10
4秒前
caelleb完成签到,获得积分20
5秒前
6秒前
昼茶完成签到,获得积分10
7秒前
7秒前
mj0320关注了科研通微信公众号
8秒前
星辰大海应助我爱蓝胖子采纳,获得10
8秒前
8秒前
Jasper应助愉快的哈密瓜采纳,获得10
8秒前
脑洞疼应助李小政采纳,获得10
8秒前
科研通AI2S应助花痴的手套采纳,获得10
9秒前
哦啦啦完成签到,获得积分10
10秒前
10秒前
早点毕业发布了新的文献求助10
11秒前
面包完成签到 ,获得积分10
11秒前
11秒前
孤蚀月发布了新的文献求助10
12秒前
迷路达发布了新的文献求助10
12秒前
剁椒鱼头发布了新的文献求助10
13秒前
Ava应助fan采纳,获得10
14秒前
14秒前
14秒前
王飞跃发布了新的文献求助10
15秒前
16秒前
16秒前
小蘑菇应助欢呼睿渊采纳,获得10
17秒前
17秒前
赖林完成签到,获得积分10
17秒前
高高的魔镜应助四月胧采纳,获得10
18秒前
星辰大海应助wxyllxx采纳,获得10
18秒前
合适的惜筠完成签到,获得积分10
18秒前
mouxq发布了新的文献求助10
19秒前
19秒前
19秒前
李健应助qi采纳,获得10
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135520
求助须知:如何正确求助?哪些是违规求助? 2786434
关于积分的说明 7777268
捐赠科研通 2442340
什么是DOI,文献DOI怎么找? 1298524
科研通“疑难数据库(出版商)”最低求助积分说明 625143
版权声明 600847