Accurately Discriminating COVID-19 from Viral and Bacterial Pneumonia According to CT Images Via Deep Learning

肺炎 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 计算机科学 冠状病毒
作者
Fudan Zheng,Liang Li,Xiang Zhang,Ying Song,Ziwang Huang,Yutian Chong,Zhiguang Chen,Hui‐Ling Zhu,Jiahao Wu,Weifeng Chen,Yutong Lu,Yuedong Yang,Yunfei Zha,Huiying Zhao,Jun Shen
出处
期刊:Interdisciplinary Sciences: Computational Life Sciences [Springer Nature]
卷期号:13 (2): 273-285 被引量:16
标识
DOI:10.1007/s12539-021-00420-z
摘要

Computed tomography (CT) is one of the most efficient diagnostic methods for rapid diagnosis of the widespread COVID-19. However, reading CT films brings a lot of concentration and time for doctors. Therefore, it is necessary to develop an automatic CT image diagnosis system to assist doctors in diagnosis. Previous studies devoted to COVID-19 in the past months focused mostly on discriminating COVID-19 infected patients from healthy persons and/or bacterial pneumonia patients, and have ignored typical viral pneumonia since it is hard to collect samples for viral pneumonia that is less frequent in adults. In addition, it is much more challenging to discriminate COVID-19 from typical viral pneumonia as COVID-19 is also a kind of virus. In this study, we have collected CT images of 262, 100, 219, and 78 persons for COVID-19, bacterial pneumonia, typical viral pneumonia, and healthy controls, respectively. To the best of our knowledge, this was the first study of quaternary classification to include also typical viral pneumonia. To effectively capture the subtle differences in CT images, we have constructed a new model by combining the ResNet50 backbone with SE blocks that was recently developed for fine image analysis. Our model was shown to outperform commonly used baseline models, achieving an overall accuracy of 0.94 with AUC of 0.96, recall of 0.94, precision of 0.95, and F1-score of 0.94. The model is available in https://github.com/Zhengfudan/COVID-19-Diagnosis-and-Pneumonia-Classification .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nature发布了新的文献求助10
2秒前
明理的傲晴完成签到,获得积分10
3秒前
乐乐应助球闪采纳,获得10
3秒前
小平完成签到,获得积分10
4秒前
4秒前
英俊的铭应助顺心绮兰采纳,获得10
5秒前
大模型应助西西弗采纳,获得10
6秒前
大气的远望应助馒头采纳,获得10
6秒前
7秒前
7秒前
唐秋秋给唐秋秋的求助进行了留言
8秒前
9秒前
9秒前
9秒前
情怀应助轻松笙采纳,获得10
10秒前
liuyan1005发布了新的文献求助10
12秒前
肉肉肉发布了新的文献求助10
12秒前
YZL发布了新的文献求助10
12秒前
13秒前
13秒前
少年发布了新的文献求助10
13秒前
13秒前
hope应助了了晴山在采纳,获得10
14秒前
李健应助想不想采纳,获得10
14秒前
14秒前
14秒前
胡椒完成签到,获得积分10
15秒前
djl1n发布了新的文献求助10
15秒前
15秒前
桃子不够吃关注了科研通微信公众号
16秒前
打工仔关注了科研通微信公众号
16秒前
17秒前
梦丸完成签到 ,获得积分10
17秒前
顺心绮兰发布了新的文献求助10
18秒前
zwj关闭了zwj文献求助
18秒前
19秒前
AidenZhang发布了新的文献求助10
19秒前
科研通AI2S应助九九九采纳,获得10
19秒前
20秒前
碧蓝无色发布了新的文献求助10
22秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170704
求助须知:如何正确求助?哪些是违规求助? 2821739
关于积分的说明 7936289
捐赠科研通 2482180
什么是DOI,文献DOI怎么找? 1322371
科研通“疑难数据库(出版商)”最低求助积分说明 633620
版权声明 602608