Surface modification of thin-film nanocomposite forward osmosis membrane with super-hydrophilic MIL-53 (Al) for doxycycline removal as an emerging contaminant and membrane antifouling property enhancement

接触角 正渗透 薄膜复合膜 化学工程 纳米复合材料 材料科学 生物污染 聚酰胺 结垢 膜污染 吸附 反渗透 化学 纳米技术 高分子化学 复合材料 有机化学 生物化学 工程类
作者
Shakiba Samsami,Mohammad‐Hossein Sarrafzadeh,Abbas Ahmadi
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:431: 133469-133469 被引量:62
标识
DOI:10.1016/j.cej.2021.133469
摘要

As a contaminant of emerging concern, doxycycline is an antibiotic that has recently drawn rising attention due to its satisfactory outcomes for the treatment of COVID-19. In this study, a novel metal–organic framework thin-film nanocomposite forward osmosis (MOF-TFN FO) membrane was developed for doxycycline removal. The lack of applied hydraulic pressure in FO suggests an energy-efficient and low-cost process. A total of five composite membranes with different MIL-53 (Al) loadings (0, 0.1, 0.2, 0.3, and 0.5 wt%) were fabricated and characterized to assess the effect of MOF incorporation on the physicochemical properties of TFN membranes. Atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM) analysis implied that incorporating MIL-53 (Al) in the polyamide selective layer affects the membrane morphology. Water contact angle measurements indicated significant augmentation in the hydrophilicity of modified membranes (20.6° for the optimally modified membrane vs. 80.4° for the unmodified membrane) owing to the increased hydroxyl group in the membrane selective layer. Due to the reduced structural parameter, the optimized membrane exhibited 94.31% enhanced water flux than the unmodified membrane without losing the selectivity. Also, the fouling experiments with organic foulant allude to the prominent antifouling property of this modified membrane with a 96.67% flux recovery ratio. More notably, the optimized membrane could maintain a high and stable rejection for doxycycline (>98.5%) for 10 h due to its size exclusion and adsorption properties. Our findings reveal the promising results of TFN FO membranes containing MOFs for antibiotics removal, which is not addressed sufficiently in the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aaron发布了新的文献求助10
刚刚
1秒前
kiki发布了新的文献求助10
1秒前
劲秉应助io采纳,获得20
1秒前
领导范儿应助henry采纳,获得10
1秒前
1秒前
sharonlbq发布了新的文献求助15
2秒前
tsuki发布了新的文献求助10
2秒前
2秒前
汎影发布了新的文献求助10
3秒前
香蕉觅云应助研友_LwbBo8采纳,获得10
3秒前
3秒前
4秒前
Liu完成签到,获得积分20
4秒前
fenghy完成签到,获得积分10
4秒前
科研通AI2S应助玩命的新波采纳,获得10
4秒前
5秒前
5秒前
动听服饰完成签到,获得积分20
5秒前
5秒前
5秒前
柒柒发布了新的文献求助10
6秒前
6秒前
积极若风完成签到,获得积分10
7秒前
7秒前
兜有米发布了新的文献求助10
7秒前
kwan发布了新的文献求助30
7秒前
ddh发布了新的文献求助10
8秒前
9秒前
Aaron完成签到,获得积分10
9秒前
FashionBoy应助快乐无极限采纳,获得10
9秒前
美丽的凌蝶完成签到,获得积分10
9秒前
kiki完成签到,获得积分10
10秒前
atlas wu发布了新的文献求助10
10秒前
fshadow完成签到,获得积分10
10秒前
动听服饰发布了新的文献求助10
10秒前
10秒前
10秒前
希望天下0贩的0应助lll采纳,获得10
11秒前
美好乐松应助shirely采纳,获得10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469451
求助须知:如何正确求助?哪些是违规求助? 3062557
关于积分的说明 9079417
捐赠科研通 2752815
什么是DOI,文献DOI怎么找? 1510651
科研通“疑难数据库(出版商)”最低求助积分说明 697925
邀请新用户注册赠送积分活动 697880