Acoustic emission data based deep learning approach for classification and detection of damage-sources in a composite panel

深度学习 人工智能 卷积神经网络 声发射 信号(编程语言) 计算机科学 小波变换 试验数据 小波 模式识别(心理学) 人工神经网络 材料科学 复合材料 程序设计语言
作者
Shirsendu Sikdar,Dianzi Liu,Abhishek Kundu
出处
期刊:Composites Part B-engineering [Elsevier BV]
卷期号:228: 109450-109450 被引量:93
标识
DOI:10.1016/j.compositesb.2021.109450
摘要

Structural health monitoring for lightweight complex composite structures is being investigated in this paper with a data-driven deep learning approach to facilitate automated learning of the map of transformed signal features to damage classes. Towards this, a series of acoustic emission (AE) based laboratory experiments have been carried out on a composite sample using a piezoelectric AE sensor network. The registered time-domain AE signals from the assigned sensor networks on the composite panel are processed with the continuous wavelet transform to extract time-frequency scalograms. A convolutional neural network based deep learning architecture is proposed to automatically extract the discrete damage features from the scalogram images and use them to classify damage-source regions in the composite panel. The proposed deep-learning approach has shown an effective damage monitoring potential with high training, validation and test accuracy for unseen datasets as well as for entirely new neighboring damage datasets. Further, the proposed network is trained, validated and tested only for the peak-signal data extracted from the raw AE data. The application of peak-signal scalogram data has shown a significant improvement in damage-source classification performance with high training, validation and test accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缓慢如南应助yu采纳,获得10
刚刚
刚刚
鹿子轩发布了新的文献求助10
刚刚
刚刚
小Q啊啾发布了新的文献求助30
1秒前
1秒前
EddieDream发布了新的文献求助10
1秒前
乐乐应助滴滴采纳,获得10
2秒前
liyuxuan发布了新的文献求助10
2秒前
pluto应助zm采纳,获得10
2秒前
大模型应助子清采纳,获得10
2秒前
林一楠应助sullyeon采纳,获得10
2秒前
灵巧一笑发布了新的文献求助10
3秒前
4秒前
4秒前
椰叶发布了新的文献求助10
4秒前
5秒前
5秒前
欧皇降霖发布了新的文献求助10
5秒前
AA发布了新的文献求助10
6秒前
NexusExplorer应助arsenal采纳,获得10
6秒前
6秒前
sandman发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
没有发布了新的文献求助10
7秒前
七月流火应助shinn采纳,获得50
7秒前
Yy完成签到,获得积分10
8秒前
8秒前
9℃发布了新的文献求助10
9秒前
钟迪发布了新的文献求助10
9秒前
肖亚鑫发布了新的文献求助10
9秒前
9秒前
wxt完成签到,获得积分20
9秒前
ZeSir发布了新的文献求助10
10秒前
辛酸长安远啊完成签到 ,获得积分10
10秒前
syh发布了新的文献求助10
10秒前
小蘑菇应助小Q啊啾采纳,获得10
10秒前
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970949
求助须知:如何正确求助?哪些是违规求助? 3515634
关于积分的说明 11179061
捐赠科研通 3250769
什么是DOI,文献DOI怎么找? 1795474
邀请新用户注册赠送积分活动 875831
科研通“疑难数据库(出版商)”最低求助积分说明 805188