电池(电)
自行车
计算机科学
锂离子电池
锂(药物)
心理学
物理
热力学
地理
精神科
考古
功率(物理)
作者
Benben Jiang,William E. Gent,Fabian Mohr,Supratim Das,Marc D. Berliner,Michael Forsuelo,Hongbo Zhao,Peter M. Attia,Aditya Grover,Patrick Herring,Martin Z. Bazant,Stephen J. Harris,Stefano Ermon,William C. Chueh,Richard D. Braatz
出处
期刊:Joule
[Elsevier BV]
日期:2021-10-29
卷期号:5 (12): 3187-3203
被引量:84
标识
DOI:10.1016/j.joule.2021.10.010
摘要
Advancing lithium-ion battery technology requires the optimization of cycling protocols.A new data-driven methodology is demonstrated for rapid, accurate prediction of the cycle life obtained by new cycling protocols using a single test lasting only 3 cycles, enabling rapid exploration of cycling protocol design spaces with orders of magnitude reduction in testing time.We achieve this by combining lifetime early prediction with a hierarchical Bayesian model (HBM) to rapidly predict performance distributions without the need for extensive repetitive testing.The methodology is applied to a comprehensive dataset of lithium-ironphosphate/graphite comprising 29 different fast-charging protocols.HBM alone provides high protocol lifetime prediction performance, with 6.5% of overall test average percent error, after cycling only one battery to failure.By combining HBM with a battery-lifetime prediction model, we achieve a test error of 8.8% using a single 3-cycle test.In addition, the generalizability of the HBM approach is demonstrated for lithium-manganese-cobaltoxide/graphite cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI