Prediction of individual thermal comfort based on ensemble transfer learning method using wearable and environmental sensors

热舒适性 学习迁移 计算机科学 可穿戴计算机 人工智能 可穿戴技术 环境科学 气象学 地理 嵌入式系统
作者
Han-Saem Park,Dong Yoon Park
出处
期刊:Building and Environment [Elsevier BV]
卷期号:207: 108492-108492 被引量:36
标识
DOI:10.1016/j.buildenv.2021.108492
摘要

Thermal comfort is a critical issue in achieving an acceptable indoor environment and managing building energy use. However, it is difficult to precisely recognize thermal comfort because its determination varies depending on the characteristics of humans and indoor spaces. Moreover, accumulating datasets of indoor environmental and individual features is challenging in terms of both collection time and cost, and is sometimes unrealistic. This study established a prediction model for individual thermal comfort to mitigate this challenge. This model is based on ensemble transfer learning (TL) to transfer knowledge from datasets of someone in different indoor spaces and thermal environments, even if the physiological and environmental data of the target subject are insufficient. First, the physiological data of each subject and the indoor environmental data were collected from wearable wristbands and sensors. Then, a pre-trained model was developed with the datasets by combining deep learning and machine learning algorithms. Based on the pre-trained model, the ensemble TL method was applied to overcome the weak generalization performance that occurred when the dataset of each target subject was insufficient. The results revealed that the ensemble TL more accurately predicted the thermal comfort of two target subjects using the pre-trained model from a source. The accuracy and F1-score were both 95% for the first subject. For the second subject, they were calculated as 85% and 83%, respectively. It was also found that the ensemble TL was suitable for application when using fewer and imbalanced datasets in the target domains. • Individual thermal comfort was predicted using ensemble transfer learning method. • A hybrid model (CNN-SVM) was utilized as a pre-trained model to be transferred. • The proposed model increased accuracy by up to 7% and the F1-score by up to 8%. • Proposed model improved generalized performance on high variance of target dataset. • Effect of data availability and fine-tuning on model performance was explored.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青辣椒完成签到 ,获得积分20
1秒前
fletmer发布了新的文献求助10
1秒前
bkagyin应助年少采纳,获得10
1秒前
哈哈哈完成签到,获得积分10
1秒前
lkk发布了新的文献求助10
2秒前
3秒前
4秒前
YH发布了新的文献求助10
4秒前
研友_VZG7GZ应助刘松采纳,获得10
4秒前
4秒前
搜集达人应助双儿采纳,获得10
5秒前
6秒前
兴奋平松发布了新的文献求助10
6秒前
脑洞疼应助wwv采纳,获得10
6秒前
6秒前
wanci应助风清扬采纳,获得10
7秒前
等待八宝粥应助内向如松采纳,获得20
8秒前
8秒前
着急的凌青完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助50
10秒前
浮游应助明理柜子采纳,获得10
10秒前
司空宛儿发布了新的文献求助10
11秒前
英姑应助YH采纳,获得10
11秒前
赵文浩应助科研通管家采纳,获得10
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
Hilda007应助科研通管家采纳,获得10
12秒前
田様应助科研通管家采纳,获得10
12秒前
Hu发布了新的文献求助10
12秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
情怀应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
13秒前
月色完成签到,获得积分10
13秒前
Orange应助科研通管家采纳,获得50
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073082
求助须知:如何正确求助?哪些是违规求助? 4293232
关于积分的说明 13377905
捐赠科研通 4114645
什么是DOI,文献DOI怎么找? 2253057
邀请新用户注册赠送积分活动 1257880
关于科研通互助平台的介绍 1190739