已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of individual thermal comfort based on ensemble transfer learning method using wearable and environmental sensors

热舒适性 学习迁移 计算机科学 可穿戴计算机 人工智能 可穿戴技术 环境科学 气象学 地理 嵌入式系统
作者
Han-Saem Park,Dong Yoon Park
出处
期刊:Building and Environment [Elsevier BV]
卷期号:207: 108492-108492 被引量:36
标识
DOI:10.1016/j.buildenv.2021.108492
摘要

Thermal comfort is a critical issue in achieving an acceptable indoor environment and managing building energy use. However, it is difficult to precisely recognize thermal comfort because its determination varies depending on the characteristics of humans and indoor spaces. Moreover, accumulating datasets of indoor environmental and individual features is challenging in terms of both collection time and cost, and is sometimes unrealistic. This study established a prediction model for individual thermal comfort to mitigate this challenge. This model is based on ensemble transfer learning (TL) to transfer knowledge from datasets of someone in different indoor spaces and thermal environments, even if the physiological and environmental data of the target subject are insufficient. First, the physiological data of each subject and the indoor environmental data were collected from wearable wristbands and sensors. Then, a pre-trained model was developed with the datasets by combining deep learning and machine learning algorithms. Based on the pre-trained model, the ensemble TL method was applied to overcome the weak generalization performance that occurred when the dataset of each target subject was insufficient. The results revealed that the ensemble TL more accurately predicted the thermal comfort of two target subjects using the pre-trained model from a source. The accuracy and F1-score were both 95% for the first subject. For the second subject, they were calculated as 85% and 83%, respectively. It was also found that the ensemble TL was suitable for application when using fewer and imbalanced datasets in the target domains. • Individual thermal comfort was predicted using ensemble transfer learning method. • A hybrid model (CNN-SVM) was utilized as a pre-trained model to be transferred. • The proposed model increased accuracy by up to 7% and the F1-score by up to 8%. • Proposed model improved generalized performance on high variance of target dataset. • Effect of data availability and fine-tuning on model performance was explored.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LMFY发布了新的文献求助10
3秒前
朱文韬发布了新的文献求助10
4秒前
怕黑的静蕾应助小琦琦采纳,获得10
5秒前
JamesPei应助小琦琦采纳,获得10
5秒前
Hayat应助无情的匪采纳,获得10
7秒前
陈星颖完成签到 ,获得积分10
9秒前
12秒前
无花果应助科研通管家采纳,获得10
12秒前
12秒前
Lucas应助科研通管家采纳,获得10
12秒前
小二郎应助科研通管家采纳,获得10
12秒前
AQI完成签到,获得积分10
14秒前
14秒前
小琦琦完成签到,获得积分20
17秒前
佳丽发布了新的文献求助10
17秒前
诸葛藏藏完成签到 ,获得积分10
18秒前
LMFY完成签到 ,获得积分10
23秒前
BA1完成签到 ,获得积分10
24秒前
lucky完成签到 ,获得积分10
27秒前
拓跋凌波完成签到,获得积分20
28秒前
喝可乐的萝卜兔完成签到 ,获得积分10
29秒前
29秒前
橘橘橘子皮完成签到 ,获得积分10
29秒前
苏苏发布了新的文献求助50
29秒前
迷人的天抒应助费老五采纳,获得10
30秒前
不知道是谁完成签到,获得积分10
33秒前
璨澄完成签到 ,获得积分10
33秒前
33秒前
可爱的函函应助静静采纳,获得10
35秒前
英姑应助aa的学采纳,获得10
40秒前
哇呀呀完成签到 ,获得积分10
40秒前
lhx完成签到,获得积分10
41秒前
张KT完成签到,获得积分10
43秒前
pterionGao完成签到 ,获得积分10
44秒前
Lyl完成签到 ,获得积分10
45秒前
爱撒娇的砖头完成签到,获得积分10
46秒前
wangfaqing942完成签到 ,获得积分10
47秒前
莱芙完成签到 ,获得积分10
49秒前
50秒前
小杨完成签到,获得积分10
50秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968181
求助须知:如何正确求助?哪些是违规求助? 3513192
关于积分的说明 11166764
捐赠科研通 3248420
什么是DOI,文献DOI怎么找? 1794243
邀请新用户注册赠送积分活动 874936
科研通“疑难数据库(出版商)”最低求助积分说明 804629