Prediction of individual thermal comfort based on ensemble transfer learning method using wearable and environmental sensors

热舒适性 学习迁移 计算机科学 可穿戴计算机 人工智能 可穿戴技术 环境科学 气象学 地理 嵌入式系统
作者
Han-Saem Park,Dong Yoon Park
出处
期刊:Building and Environment [Elsevier]
卷期号:207: 108492-108492 被引量:36
标识
DOI:10.1016/j.buildenv.2021.108492
摘要

Thermal comfort is a critical issue in achieving an acceptable indoor environment and managing building energy use. However, it is difficult to precisely recognize thermal comfort because its determination varies depending on the characteristics of humans and indoor spaces. Moreover, accumulating datasets of indoor environmental and individual features is challenging in terms of both collection time and cost, and is sometimes unrealistic. This study established a prediction model for individual thermal comfort to mitigate this challenge. This model is based on ensemble transfer learning (TL) to transfer knowledge from datasets of someone in different indoor spaces and thermal environments, even if the physiological and environmental data of the target subject are insufficient. First, the physiological data of each subject and the indoor environmental data were collected from wearable wristbands and sensors. Then, a pre-trained model was developed with the datasets by combining deep learning and machine learning algorithms. Based on the pre-trained model, the ensemble TL method was applied to overcome the weak generalization performance that occurred when the dataset of each target subject was insufficient. The results revealed that the ensemble TL more accurately predicted the thermal comfort of two target subjects using the pre-trained model from a source. The accuracy and F1-score were both 95% for the first subject. For the second subject, they were calculated as 85% and 83%, respectively. It was also found that the ensemble TL was suitable for application when using fewer and imbalanced datasets in the target domains. • Individual thermal comfort was predicted using ensemble transfer learning method. • A hybrid model (CNN-SVM) was utilized as a pre-trained model to be transferred. • The proposed model increased accuracy by up to 7% and the F1-score by up to 8%. • Proposed model improved generalized performance on high variance of target dataset. • Effect of data availability and fine-tuning on model performance was explored.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助单薄纸飞机采纳,获得10
刚刚
Nara2021完成签到,获得积分10
刚刚
吴明轩完成签到,获得积分10
刚刚
玄妙发布了新的文献求助10
刚刚
Lei完成签到,获得积分10
刚刚
1秒前
LC发布了新的文献求助10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
十一完成签到 ,获得积分10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
2秒前
ld2024完成签到,获得积分10
2秒前
2秒前
平淡的碧菡完成签到,获得积分10
3秒前
Heavenfalling完成签到,获得积分10
3秒前
醉熏的夏兰完成签到,获得积分10
4秒前
呜呜呜发布了新的文献求助10
4秒前
frank完成签到,获得积分10
4秒前
lzl完成签到,获得积分10
4秒前
5秒前
丿淘丶Tao丨完成签到,获得积分10
5秒前
朴素爆米花完成签到,获得积分10
6秒前
西科Jeremy完成签到,获得积分10
6秒前
tjfwg完成签到,获得积分10
7秒前
bcsunny2022完成签到,获得积分10
7秒前
111123123123完成签到 ,获得积分10
7秒前
星辰大海应助Oasis采纳,获得10
8秒前
shi0331完成签到,获得积分10
8秒前
8秒前
研友_VZG7GZ应助健忘的寄瑶采纳,获得10
8秒前
zhw完成签到,获得积分10
9秒前
10秒前
pwy完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
斯文败类应助EasyE采纳,获得10
10秒前
ffff完成签到,获得积分10
10秒前
user_one完成签到,获得积分10
12秒前
哔噗哔噗完成签到 ,获得积分10
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147003
求助须知:如何正确求助?哪些是违规求助? 2798336
关于积分的说明 7827807
捐赠科研通 2454956
什么是DOI,文献DOI怎么找? 1306492
科研通“疑难数据库(出版商)”最低求助积分说明 627808
版权声明 601565