髓鞘
间隙
染色
多发性硬化
荧光
中枢神经系统
视神经
生物物理学
化学
病理
生物医学工程
生物
解剖
神经科学
医学
免疫学
光学
泌尿科
物理
作者
Mingyu Wu,Alex Y. H. Wong,Jong-Kai Leung,Chuen Kam,Kenneth Lap-Kei Wu,Y. Chan,Kai Li,Nancy Y. Ip,Sijie Chen
标识
DOI:10.1073/pnas.2106143118
摘要
Myelin, the structure that surrounds and insulates neuronal axons, is an important component of the central nervous system. The visualization of the myelinated fibers in brain tissues can largely facilitate the diagnosis of myelin-related diseases and understand how the brain functions. However, the most widely used fluorescent probes for myelin visualization, such as Vybrant DiD and FluoroMyelin, have strong background staining, low-staining contrast, and low brightness. These drawbacks may originate from their self-quenching properties and greatly limit their applications in three-dimensional (3D) imaging and myelin tracing. Chemical probes for the fluorescence imaging of myelin in 3D, especially in optically cleared tissue, are highly desirable but rarely reported. We herein developed a near-infrared aggregation-induced emission (AIE)-active probe, PM-ML, for high-performance myelin imaging. PM-ML is plasma membrane targeting with good photostability. It could specifically label myelinated fibers in teased sciatic nerves and mouse brain tissues with a high-signal-to-background ratio. PM-ML could be used for 3D visualization of myelin sheaths, myelinated fibers, and fascicles with high-penetration depth. The staining is compatible with different brain tissue-clearing methods, such as ClearT and ClearT2 The utility of PM-ML staining in demyelinating disease studies was demonstrated using the mouse model of multiple sclerosis. Together, this work provides an important tool for high-quality myelin visualization across scales, which may greatly contribute to the study of myelin-related diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI