Review of Image Classification Algorithms Based on Convolutional Neural Networks

计算机科学 卷积神经网络 人工智能 上下文图像分类 模式识别(心理学) 图像(数学) 分割 人工神经网络 深度学习
作者
Leiyu Chen,Shaobo Li,Qiang Bai,Jing Yang,Sanlong Jiang,Yanming Miao
出处
期刊:Remote Sensing [MDPI AG]
卷期号:13 (22): 4712-4712 被引量:362
标识
DOI:10.3390/rs13224712
摘要

Image classification has always been a hot research direction in the world, and the emergence of deep learning has promoted the development of this field. Convolutional neural networks (CNNs) have gradually become the mainstream algorithm for image classification since 2012, and the CNN architecture applied to other visual recognition tasks (such as object detection, object localization, and semantic segmentation) is generally derived from the network architecture in image classification. In the wake of these successes, CNN-based methods have emerged in remote sensing image scene classification and achieved advanced classification accuracy. In this review, which focuses on the application of CNNs to image classification tasks, we cover their development, from their predecessors up to recent state-of-the-art (SOAT) network architectures. Along the way, we analyze (1) the basic structure of artificial neural networks (ANNs) and the basic network layers of CNNs, (2) the classic predecessor network models, (3) the recent SOAT network algorithms, (4) comprehensive comparison of various image classification methods mentioned in this article. Finally, we have also summarized the main analysis and discussion in this article, as well as introduce some of the current trends.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蒋若风发布了新的文献求助10
刚刚
123完成签到,获得积分10
刚刚
狗剩子完成签到,获得积分10
刚刚
Lvj完成签到,获得积分10
1秒前
bkagyin应助马保国123采纳,获得10
1秒前
1秒前
2秒前
大个应助乐观的幼珊采纳,获得10
2秒前
2秒前
2秒前
2秒前
顺顺完成签到,获得积分10
4秒前
4秒前
小马甲应助a1oft采纳,获得10
4秒前
Keke完成签到,获得积分10
4秒前
5秒前
自然秋柳发布了新的文献求助10
5秒前
candy6663339完成签到,获得积分10
5秒前
weiwei完成签到,获得积分10
5秒前
大个应助苗条的山晴采纳,获得10
6秒前
努力发一区完成签到 ,获得积分0
6秒前
蒋时晏应助恶恶么v采纳,获得30
6秒前
7秒前
7秒前
gennp完成签到,获得积分10
7秒前
gg完成签到,获得积分10
7秒前
1111发布了新的文献求助10
7秒前
情怀应助wjh采纳,获得10
8秒前
8秒前
Hey关闭了Hey文献求助
8秒前
学渣向下完成签到,获得积分10
8秒前
咚咚咚发布了新的文献求助10
8秒前
9秒前
willen完成签到,获得积分10
9秒前
9秒前
奇怪的柒完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
文静的枫叶完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759